BLOG Carl McTague rss icon
mathematician, composer, photographer, fiddler

23 May 2020 | categories: Mathematics

Computing p-Typical Formal Group Laws

As part of my ongoing project with Doug Ravenel and Vitaly Lorman to compute the homotopy type of the string bordism spectrum $\mathrm{MO}\langle8\rangle$ at the prime 3, I wrote the following Mathematica code to efficiently compute the coefficients of p-typical formal group laws. It works at any prime p, with Araki or Hazewinkel generators. It also efficiently supports truncation, i.e. $\mathrm{BP}\langle k\rangle$. [This is a sliver of a larger library I have written for computing in Hopf rings.]

The code uses two methods. Method I is naïve but fast at low precision. Method II is more sophisticated, based on a perhaps not widely known theorem in Doug’s Green Book. It is generally slower at low precision but faster at high precision. My purpose here is both to make code for computing these things readily available, and to popularize this second method.

A little background: Formal group laws (henceforth FGL’s) are the sort of formal power series you get when you take the Taylor expansion of a Lie group at the identity. They lie between Lie groups and Lie algebras. There is a universal 1-dimensional FGL, and when you localize it at a prime p, it breaks up into simpler, p-typical FGL’s. These are FGL’s $F(x,y)$, also written $\newcommand{\Fplus}{+_F} x\Fplus y$, whose logarithms $\log_F(x)=\int_0^x\frac{dt}{d/dy(F(0,y))}$ have the form $\log_F(x)=\sum \ell_n x^{p^n}$. The sparsity of their coefficients makes them easier to work with.

Such FGL’s play an important role in algebraic topology, specifically chromatic homotopy theory. They describe how Chern classes within a given cohomology theory behave with respect to tensor product. And just as the universal 1-dimensional FGL splits up, when localized at a prime $p$, into $p$-typical formal group laws, the cohomology theory MU (complex cobordism) splits up, when localized, into simpler cohomology theories called BP (Brown-Peterson cohomology). The p-typical FGL’s computed below thus play an important role in computations involving BP and, via the Adams-Novikov spectral sequence, the homotopy groups of spheres.

There are two systems of generators commonly used when working with p-typical FGL’s – Araki and Hazewinkel, both denoted $v_i$, and defined by the nearly identical recursive formulas $ p\ell_n = \sum_{i=0}^n \ell_i v_{n-i}^{p^i}$ and $ p\ell_n = \sum_{i=0}^{n-1} \ell_i v_{n-i}^{p^i}$ respectively. The code supports both. Switch between them anytime by setting gen=Araki or gen=Hazewinkel. Similarly, switch between primes anytime by setting p=3 etc.

Back to the algorithms. Method I computes the p-typical FGL by the formula $$ x \Fplus y = \exp_F( \log_F(x)+\log_F(y) ). $$ This reduces the computation to off-the-shelf algorithms for the inverse and composition of power series.

Method II is based on Theorem 4.3.9 of the Green Book, which establishes an equality of p-typical formal sums, $$ {\sum_t}^F x_t = {\sum_I}^F v_I w_I(x_1,x_2,\dots). $$ On the RHS, the sum ranges over all finite sequences $I$ of positive integers, $v_I$ is a certain polynomial in the $v_i$’s of degree $2(p^{\|I\|}-1)$, and $w_I$ is a polynomial of degree $p^{\|I\|}$, where $\|I\|$ is the sum of the entries of $I$. (See Section 4.3 of the Green Book for details.)

This might not look like a promising way to compute $ x \Fplus y $, since it transforms it into an infinite formal sum of complicated polynomials, $$ x \Fplus y = v_{\emptyset}w_{\emptyset}(x,y) \Fplus v_{(1)}w_{(1)}(x,y) \Fplus v_{(2)}w_{(2)}(x,y) \Fplus v_{(1,1)}w_{(1,1)}(x,y) \Fplus \cdots $$ But it has its pluses! If you are only working to some fixed precision, say, then since the degrees of the polynomials $w_I$ grow quickly, only a few of them matter. In fact, you can apply the theorem a second time to obtain $$ x \Fplus y = v_{\emptyset}w_{\emptyset}(v_{\emptyset}w_{\emptyset}(x,y),w_{(1)}(x,y),v_{(2)}w_{(2)}(x,y),\dots) \Fplus v_{(1)}w_{(1)}(\dots) \Fplus v_{(2)}w_{(2)}(\dots)\Fplus \cdots$$ Again, this might not look promising. In fact, it might even look crazy. But now the degrees of the formal summands (or rather their vanishing orders—they are no longer homogeneous) grow even more quickly than before. By applying the theorem again and again, you can make each summand except the first have such high degree that it is irrelevant to your working precision, and thereby eliminate formal sums from the RHS altogether. That’s exactly how the code below works. [The code is also available from github.]

p=2; gen=Araki; gen=Hazewinkel;

BPl[0,_.,_.,_.] = 1;
BPl[n_Integer,k:(_Integer|Infinity):Infinity] := BPl[n,k,p,gen];
BPl[n_Integer,k:(_Integer|Infinity),p_Integer,gen_Symbol] := BPl[n,k,p,gen] =
  Simplify[1/(p-If[gen===Araki,p^p^n,0])
    Sum[BPl[i,k,p,gen] Subscript[v,n-i]^p^i, {i,Max[n-k,0],n-1}] /. Subscript[v,0]->p ];
logBP[ord_Integer,k:(_Integer|Infinity):Infinity] := logBP[ord,k,p,gen];
logBP[ord_Integer,k_,p_Integer,gen_Symbol] := logBP[ord,k,p,gen] =
  Function[d,Evaluate[Sum[BPl[n,k,p,gen] d^p^n, {n, 0, Log[p, ord]}] + O[d]^ord]];
expBP[ord_Integer,k:(_Integer|Infinity):Infinity] := expBP[ord,k,p,gen];
expBP[ord_Integer,k_,p_Integer,gen_Symbol] := expBP[ord,k,p,gen] =
  Function[d,Evaluate[Map[Simplify,InverseSeries[logBP[ord,k,p,gen][d]],{2}]]];
fglBP[ord_Integer,k:(_Integer|Infinity):Infinity,d_Symbol:d] := fglBP[ord,k,d,p,gen];
fglBP[ord_Integer,k_,d_Symbol,p_Integer,gen_Symbol]:=
  fglBP[ord,k,d,p,gen]=Function[{x,y},Evaluate[Module[{z}, Map[Expand, 
    ComposeSeries[expBP[ord,k,p,gen][d], 
      ComposeSeries[logBP[ord,k,p,gen][z],x d+O[d]^ord] + 
      ComposeSeries[logBP[ord,k,p,gen][z],y d+O[d]^ord]], {2}]]]];
pSerBP[ord_Integer,k:(_Integer|Infinity):Infinity,d_Symbol:d]:=pSerBP[ord,k,d,p,gen];
pSerBP[ord_Integer,k_,d_Symbol,p_Integer,gen_Symbol][x_]:=
  Module[{z}, With[{xPlus=(Normal[fglBP[ord,k,d,p,gen][x,z]]/.d->1)+O[z]^ord},
    Map[Expand,Nest[ComposeSeries[xPlus,#]&,x+O[x]^ord,p-1],{2}]]];

vI[I_List] := vI[I,p]; vI[{},_] = 1;
vI[I_List,p_Integer] := vI[I,p] =
  Subscript[v, First[I]] vI[Rest[I]]^p^First[I] /. Subscript[v,0]->p;
II[I_List] := II[I,p]; II[n_Integer,p_Integer] := II[n,p]=p-p^p^n;
II[{},_]=1; II[I_List,p_Integer] := II[I,p]=II[Plus@@I,p]II[Most[I],p];

w[K_List,nvars_Integer] := w[K,nvars,p,gen];
w[{},_,_,_][vars__] := Plus[vars];
w[K_List,nvars_Integer,p_Integer,gen_Symbol] :=
  With[{slotvars = Slot/@Range[1,nvars]},
  With[{formula  = 1/If[gen===Hazewinkel, p^Length[K], II[K]]
    (Plus@@(#^p^(Plus@@K) & /@ slotvars)
    - Plus@@(Function[j,With[{I=Drop[K,-j],J=Take[K,-j]},
              If[gen===Hazewinkel, p^Length[J], II[K]/II[I]]
              w[J,nvars,p,gen][Sequence@@slotvars]^p^(Plus@@I)]]
                /@ Range[0,Length[K]-1]))},
     w[K,nvars,p,gen]=formula&; formula& ]];

BPSumSimplify[ord_Integer,k:(_Integer|Infinity):Infinity,d_Symbol:d] := BPSumSimplify[ord,k,d,p,gen];
BPSumSimplify[ord_Integer,k:(_Integer|Infinity),d_Symbol,p_Integer,gen_Symbol][terms_List] :=
  Cases[ Map[Simplify, vI[#](w[#,Length[terms],p,gen]@@terms) + O[d]^ord, {2}]& /@
    Flatten[Permutations/@IntegerPartitions[#,All,Range[1,Min[k,#]]]&/@Range[0,Log[p,ord]],2],
  Except[O[d]^ord]]

BPSumToOrder[ord_Integer,k:(_Integer|Infinity):Infinity,d_Symbol:d] := BPSumToOrder[ord,k,d,p,gen];
BPSumToOrder[ord_Integer,k:(_Integer|Infinity),d_Symbol,p_Integer,gen_Symbol][terms__]:=
  Map[Expand,First[NestWhile[BPSumSimplify[ord,k,d,p,gen],{terms}d,Length[#]>1&],{2}]];

pSeriesBP[ord_Integer,k:(_Integer|Infinity):Infinity] := pSeriesBP[ord,k,p,gen];
pSeriesBP[ord_Integer,k:(_Integer|Infinity),p_Integer,gen_Symbol][x_] :=
  Module[{d},Normal[BPSumToOrder[ord,k,d,p,gen]@@Table[x,p]]/.d->1]+O[x]^ord;

To warm up, let’s compute the p-typical FGL at p=2 in terms of Hazewinkel generators to degree 12 by running

p=2; gen=Hazewinkel;
fglBP[13][x,y]

which outputs

$d (x+y)-d^2 v_1 x y+d^3 \left(v_1^2 x^2 y+v_1^2 x y^2\right)+d^4 \left(\left(-2 v_1^3-2 v_2\right) x^3 y+\left(-4 v_1^3-3 v_2\right) x^2 y^2+\left(-2 v_1^3-2 v_2\right) x y^3\right)+d^5 \left(\left(3 v_1^4+4 v_2 v_1\right) x^4 y+\left(10 v_1^4+11 v_2 v_1\right) x^3 y^2+\left(10 v_1^4+11 v_2 v_1\right) x^2 y^3+\left(3 v_1^4+4 v_2 v_1\right) x y^4\right)+d^6 \left(\left(-4 v_1^5-6 v_2 v_1^2\right) x^5 y+\left(-21 v_1^5-28 v_2 v_1^2\right) x^4 y^2+\left(-34 v_1^5-43 v_2 v_1^2\right) x^3 y^3+\left(-21 v_1^5-28 v_2 v_1^2\right) x^2 y^4+\left(-4 v_1^5-6 v_2 v_1^2\right) x y^5\right)+d^7 \left(\left(6 v_1^6+12 v_2 v_1^3+4 v_2^2\right) x^6 y+\left(43 v_1^6+75 v_2 v_1^3+18 v_2^2\right) x^5 y^2+\left(101 v_1^6+164 v_2 v_1^3+34 v_2^2\right) x^4 y^3+\left(101 v_1^6+164 v_2 v_1^3+34 v_2^2\right) x^3 y^4+\left(43 v_1^6+75 v_2 v_1^3+18 v_2^2\right) x^2 y^5+\left(6 v_1^6+12 v_2 v_1^3+4 v_2^2\right) x y^6\right)+d^8 \left(\left(-10 v_1^7-24 v_2 v_1^4-14 v_2^2 v_1-4 v_3\right) x^7 y+\left(-88 v_1^7-190 v_2 v_1^4-89 v_2^2 v_1-14 v_3\right) x^6 y^2+\left(-275 v_1^7-551 v_2 v_1^4-226 v_2^2 v_1-28 v_3\right) x^5 y^3+\left(-394 v_1^7-769 v_2 v_1^4-302 v_2^2 v_1-35 v_3\right) x^4 y^4+\left(-275 v_1^7-551 v_2 v_1^4-226 v_2^2 v_1-28 v_3\right) x^3 y^5+\left(-88 v_1^7-190 v_2 v_1^4-89 v_2^2 v_1-14 v_3\right) x^2 y^6+\left(-10 v_1^7-24 v_2 v_1^4-14 v_2^2 v_1-4 v_3\right) x y^7\right)+d^9 \left(\left(15 v_1^8+40 v_2 v_1^5+28 v_2^2 v_1^2+8 v_3 v_1\right) x^8 y+\left(169 v_1^8+420 v_2 v_1^5+257 v_2^2 v_1^2+46 v_3 v_1\right) x^7 y^2+\left(680 v_1^8+1586 v_2 v_1^5+879 v_2^2 v_1^2+126 v_3 v_1\right) x^6 y^3+\left(1303 v_1^8+2933 v_2 v_1^5+1543 v_2^2 v_1^2+203 v_3 v_1\right) x^5 y^4+\left(1303 v_1^8+2933 v_2 v_1^5+1543 v_2^2 v_1^2+203 v_3 v_1\right) x^4 y^5+\left(680 v_1^8+1586 v_2 v_1^5+879 v_2^2 v_1^2+126 v_3 v_1\right) x^3 y^6+\left(169 v_1^8+420 v_2 v_1^5+257 v_2^2 v_1^2+46 v_3 v_1\right) x^2 y^7+\left(15 v_1^8+40 v_2 v_1^5+28 v_2^2 v_1^2+8 v_3 v_1\right) x y^8\right)+d^{10} \left(\left(-22 v_1^9-66 v_2 v_1^6-58 v_2^2 v_1^3-12 v_3 v_1^2-8 v_2^3\right) x^9 y+\left(-312 v_1^9-880 v_2 v_1^6-688 v_2^2 v_1^3-104 v_3 v_1^2-72 v_2^3\right) x^8 y^2+\left(-1573 v_1^9-4192 v_2 v_1^6-3001 v_2^2 v_1^3-382 v_3 v_1^2-260 v_2^3\right) x^7 y^3+\left(-3861 v_1^9-9900 v_2 v_1^6-6707 v_2^2 v_1^3-791 v_3 v_1^2-523 v_2^3\right) x^6 y^4+\left(-5156 v_1^9-13042 v_2 v_1^6-8671 v_2^2 v_1^3-1001 v_3 v_1^2-654 v_2^3\right) x^5 y^5+\left(-3861 v_1^9-9900 v_2 v_1^6-6707 v_2^2 v_1^3-791 v_3 v_1^2-523 v_2^3\right) x^4 y^6+\left(-1573 v_1^9-4192 v_2 v_1^6-3001 v_2^2 v_1^3-382 v_3 v_1^2-260 v_2^3\right) x^3 y^7+\left(-312 v_1^9-880 v_2 v_1^6-688 v_2^2 v_1^3-104 v_3 v_1^2-72 v_2^3\right) x^2 y^8+\left(-22 v_1^9-66 v_2 v_1^6-58 v_2^2 v_1^3-12 v_3 v_1^2-8 v_2^3\right) x y^9\right)+d^{11} \left(\left(34 v_1^{10}+116 v_2 v_1^7+128 v_2^2 v_1^4+24 v_3 v_1^3+40 v_2^3 v_1+16 v_2 v_3\right) x^{10} y+\left(574 v_1^{10}+1837 v_2 v_1^7+1811 v_2^2 v_1^4+254 v_3 v_1^3+456 v_2^3 v_1+120 v_2 v_3\right) x^9 y^2+\left(3506 v_1^{10}+10612 v_2 v_1^7+9596 v_2^2 v_1^4+1144 v_3 v_1^3+2060 v_2^3 v_1+424 v_2 v_3\right) x^8 y^3+\left(10643 v_1^{10}+30921 v_2 v_1^7+26363 v_2^2 v_1^4+2906 v_3 v_1^3+5103 v_2^3 v_1+918 v_2 v_3\right) x^7 y^4+\left(18115 v_1^{10}+51502 v_2 v_1^7+42619 v_2^2 v_1^4+4557 v_3 v_1^3+7847 v_2^3 v_1+1330 v_2 v_3\right) x^6 y^5+\left(18115 v_1^{10}+51502 v_2 v_1^7+42619 v_2^2 v_1^4+4557 v_3 v_1^3+7847 v_2^3 v_1+1330 v_2 v_3\right) x^5 y^6+\left(10643 v_1^{10}+30921 v_2 v_1^7+26363 v_2^2 v_1^4+2906 v_3 v_1^3+5103 v_2^3 v_1+918 v_2 v_3\right) x^4 y^7+\left(3506 v_1^{10}+10612 v_2 v_1^7+9596 v_2^2 v_1^4+1144 v_3 v_1^3+2060 v_2^3 v_1+424 v_2 v_3\right) x^3 y^8+\left(574 v_1^{10}+1837 v_2 v_1^7+1811 v_2^2 v_1^4+254 v_3 v_1^3+456 v_2^3 v_1+120 v_2 v_3\right) x^2 y^9+\left(34 v_1^{10}+116 v_2 v_1^7+128 v_2^2 v_1^4+24 v_3 v_1^3+40 v_2^3 v_1+16 v_2 v_3\right) x y^{10}\right)+d^{12} \left(\left(-52 v_1^{11}-196 v_2 v_1^8-250 v_2^2 v_1^5-44 v_3 v_1^4-104 v_2^3 v_1^2-48 v_2 v_3 v_1\right) x^{11} y+\left(-1039 v_1^{11}-3704 v_2 v_1^8-4325 v_2^2 v_1^5-582 v_3 v_1^4-1564 v_2^3 v_1^2-520 v_2 v_3 v_1\right) x^{10} y^2+\left(-7546 v_1^{11}-25549 v_2 v_1^8-27679 v_2^2 v_1^5-3170 v_3 v_1^4-8920 v_2^3 v_1^2-2400 v_2 v_3 v_1\right) x^9 y^3+\left(-27636 v_1^{11}-89822 v_2 v_1^8-91989 v_2^2 v_1^5-9682 v_3 v_1^4-27241 v_2^3 v_1^2-6470 v_2 v_3 v_1\right) x^8 y^4+\left(-58002 v_1^{11}-183665 v_2 v_1^8-181684 v_2^2 v_1^5-18408 v_3 v_1^4-51133 v_2^3 v_1^2-11384 v_2 v_3 v_1\right) x^7 y^5+\left(-73850 v_1^{11}-231765 v_2 v_1^8-226598 v_2^2 v_1^5-22715 v_3 v_1^4-62707 v_2^3 v_1^2-13685 v_2 v_3 v_1\right) x^6 y^6+\left(-58002 v_1^{11}-183665 v_2 v_1^8-181684 v_2^2 v_1^5-18408 v_3 v_1^4-51133 v_2^3 v_1^2-11384 v_2 v_3 v_1\right) x^5 y^7+\left(-27636 v_1^{11}-89822 v_2 v_1^8-91989 v_2^2 v_1^5-9682 v_3 v_1^4-27241 v_2^3 v_1^2-6470 v_2 v_3 v_1\right) x^4 y^8+\left(-7546 v_1^{11}-25549 v_2 v_1^8-27679 v_2^2 v_1^5-3170 v_3 v_1^4-8920 v_2^3 v_1^2-2400 v_2 v_3 v_1\right) x^3 y^9+\left(-1039 v_1^{11}-3704 v_2 v_1^8-4325 v_2^2 v_1^5-582 v_3 v_1^4-1564 v_2^3 v_1^2-520 v_2 v_3 v_1\right) x^2 y^{10}+\left(-52 v_1^{11}-196 v_2 v_1^8-250 v_2^2 v_1^5-44 v_3 v_1^4-104 v_2^3 v_1^2-48 v_2 v_3 v_1\right) x y^{11}\right)+O\left(d^{13}\right)$

[Mathematica handles single-variable power series better than multi-variable ones, so the code represents this two-variable power series in $x$ and $y$ as a power series in a single dummy variable $d$.]

fglBP and the rest of the commands take an optional second parameter k (which defaults to ∞) for restricting to $\mathrm{BP}\langle k\rangle$. Put simply, this kills $v_n$ for $n>k$. Let’s go to $\mathrm{BP}\langle1\rangle$ and increase precision, remaining at p=2,

fglBP[24,1][x,y]

to get

$d (x+y)-d^2 v_1 x y+d^3 \left(v_1^2 x^2 y+v_1^2 x y^2\right)+d^4 \left(-2 v_1^3 x^3 y-4 v_1^3 x^2 y^2-2 v_1^3 x y^3\right)+d^5 \left(3 v_1^4 x^4 y+10 v_1^4 x^3 y^2+10 v_1^4 x^2 y^3+3 v_1^4 x y^4\right)+d^6 \left(-4 v_1^5 x^5 y-21 v_1^5 x^4 y^2-34 v_1^5 x^3 y^3-21 v_1^5 x^2 y^4-4 v_1^5 x y^5\right)+d^7 \left(6 v_1^6 x^6 y+43 v_1^6 x^5 y^2+101 v_1^6 x^4 y^3+101 v_1^6 x^3 y^4+43 v_1^6 x^2 y^5+6 v_1^6 x y^6\right)+d^8 \left(-10 v_1^7 x^7 y-88 v_1^7 x^6 y^2-275 v_1^7 x^5 y^3-394 v_1^7 x^4 y^4-275 v_1^7 x^3 y^5-88 v_1^7 x^2 y^6-10 v_1^7 x y^7\right)+d^9 \left(15 v_1^8 x^8 y+169 v_1^8 x^7 y^2+680 v_1^8 x^6 y^3+1303 v_1^8 x^5 y^4+1303 v_1^8 x^4 y^5+680 v_1^8 x^3 y^6+169 v_1^8 x^2 y^7+15 v_1^8 x y^8\right)+d^{10} \left(-22 v_1^9 x^9 y-312 v_1^9 x^8 y^2-1573 v_1^9 x^7 y^3-3861 v_1^9 x^6 y^4-5156 v_1^9 x^5 y^5-3861 v_1^9 x^4 y^6-1573 v_1^9 x^3 y^7-312 v_1^9 x^2 y^8-22 v_1^9 x y^9\right)+d^{11} \left(34 v_1^{10} x^{10} y+574 v_1^{10} x^9 y^2+3506 v_1^{10} x^8 y^3+10643 v_1^{10} x^7 y^4+18115 v_1^{10} x^6 y^5+18115 v_1^{10} x^5 y^6+10643 v_1^{10} x^4 y^7+3506 v_1^{10} x^3 y^8+574 v_1^{10} x^2 y^9+34 v_1^{10} x y^{10}\right)+d^{12} \left(-52 v_1^{11} x^{11} y-1039 v_1^{11} x^{10} y^2-7546 v_1^{11} x^9 y^3-27636 v_1^{11} x^8 y^4-58002 v_1^{11} x^7 y^5-73850 v_1^{11} x^6 y^6-58002 v_1^{11} x^5 y^7-27636 v_1^{11} x^4 y^8-7546 v_1^{11} x^3 y^9-1039 v_1^{11} x^2 y^{10}-52 v_1^{11} x y^{11}\right)+d^{13} \left(78 v_1^{12} x^{12} y+1840 v_1^{12} x^{11} y^2+15709 v_1^{12} x^{10} y^3+68193 v_1^{12} x^9 y^4+172287 v_1^{12} x^8 y^5+270163 v_1^{12} x^7 y^6+270163 v_1^{12} x^6 y^7+172287 v_1^{12} x^5 y^8+68193 v_1^{12} x^4 y^9+15709 v_1^{12} x^3 y^{10}+1840 v_1^{12} x^2 y^{11}+78 v_1^{12} x y^{12}\right)+d^{14} \left(-118 v_1^{13} x^{13} y-3224 v_1^{13} x^{12} y^2-31900 v_1^{13} x^{11} y^3-161602 v_1^{13} x^{10} y^4-482163 v_1^{13} x^9 y^5-908378 v_1^{13} x^8 y^6-1118046 v_1^{13} x^7 y^7-908378 v_1^{13} x^6 y^8-482163 v_1^{13} x^5 y^9-161602 v_1^{13} x^4 y^{10}-31900 v_1^{13} x^3 y^{11}-3224 v_1^{13} x^2 y^{12}-118 v_1^{13} x y^{13}\right)+d^{15} \left(180 v_1^{14} x^{14} y+5611 v_1^{14} x^{13} y^2+63524 v_1^{14} x^{12} y^3+370532 v_1^{14} x^{11} y^4+1285316 v_1^{14} x^{10} y^5+2853441 v_1^{14} x^9 y^6+4215142 v_1^{14} x^8 y^7+4215142 v_1^{14} x^7 y^8+2853441 v_1^{14} x^6 y^9+1285316 v_1^{14} x^5 y^{10}+370532 v_1^{14} x^4 y^{11}+63524 v_1^{14} x^3 y^{12}+5611 v_1^{14} x^2 y^{13}+180 v_1^{14} x y^{14}\right)+d^{16} \left(-274 v_1^{15} x^{15} y-9675 v_1^{15} x^{14} y^2-124223 v_1^{15} x^{13} y^3-825517 v_1^{15} x^{12} y^4-3287502 v_1^{15} x^{11} y^5-8468689 v_1^{15} x^{10} y^6-14724994 v_1^{15} x^9 y^7-17666224 v_1^{15} x^8 y^8-14724994 v_1^{15} x^7 y^9-8468689 v_1^{15} x^6 y^{10}-3287502 v_1^{15} x^5 y^{11}-825517 v_1^{15} x^4 y^{12}-124223 v_1^{15} x^3 y^{13}-9675 v_1^{15} x^2 y^{14}-274 v_1^{15} x y^{15}\right)+d^{17} \left(415 v_1^{16} x^{16} y+16531 v_1^{16} x^{15} y^2+238981 v_1^{16} x^{14} y^3+1793551 v_1^{16} x^{13} y^4+8114767 v_1^{16} x^{12} y^5+23952980 v_1^{16} x^{11} y^6+48268807 v_1^{16} x^{10} y^7+68123059 v_1^{16} x^9 y^8+68123059 v_1^{16} x^8 y^9+48268807 v_1^{16} x^7 y^{10}+23952980 v_1^{16} x^6 y^{11}+8114767 v_1^{16} x^5 y^{12}+1793551 v_1^{16} x^4 y^{13}+238981 v_1^{16} x^3 y^{14}+16531 v_1^{16} x^2 y^{15}+415 v_1^{16} x y^{16}\right)+d^{18} \left(-630 v_1^{17} x^{17} y-28072 v_1^{17} x^{16} y^2-453515 v_1^{17} x^{15} y^3-3813416 v_1^{17} x^{14} y^4-19426112 v_1^{17} x^{13} y^5-65016261 v_1^{17} x^{12} y^6-149931112 v_1^{17} x^{11} y^7-245052157 v_1^{17} x^{10} y^8-288197074 v_1^{17} x^9 y^9-245052157 v_1^{17} x^8 y^{10}-149931112 v_1^{17} x^7 y^{11}-65016261 v_1^{17} x^6 y^{12}-19426112 v_1^{17} x^5 y^{13}-3813416 v_1^{17} x^4 y^{14}-453515 v_1^{17} x^3 y^{15}-28072 v_1^{17} x^2 y^{16}-630 v_1^{17} x y^{17}\right)+d^{19} \left(958 v_1^{18} x^{18} y+47412 v_1^{18} x^{17} y^2+850384 v_1^{18} x^{16} y^3+7955817 v_1^{18} x^{15} y^4+45277700 v_1^{18} x^{14} y^5+170286221 v_1^{18} x^{13} y^6+444652182 v_1^{18} x^{12} y^7+830961623 v_1^{18} x^{11} y^8+1131282117 v_1^{18} x^{10} y^9+1131282117 v_1^{18} x^9 y^{10}+830961623 v_1^{18} x^8 y^{11}+444652182 v_1^{18} x^7 y^{12}+170286221 v_1^{18} x^6 y^{13}+45277700 v_1^{18} x^5 y^{14}+7955817 v_1^{18} x^4 y^{15}+850384 v_1^{18} x^3 y^{16}+47412 v_1^{18} x^2 y^{17}+958 v_1^{18} x y^{18}\right)+d^{20} \left(-1454 v_1^{19} x^{19} y-79606 v_1^{19} x^{18} y^2-1576972 v_1^{19} x^{17} y^3-16318194 v_1^{19} x^{16} y^4-103060418 v_1^{19} x^{15} y^5-432229539 v_1^{19} x^{14} y^6-1266616868 v_1^{19} x^{13} y^7-2677879750 v_1^{19} x^{12} y^8-4166290333 v_1^{19} x^{11} y^9-4822077912 v_1^{19} x^{10} y^{10}-4166290333 v_1^{19} x^9 y^{11}-2677879750 v_1^{19} x^8 y^{12}-1266616868 v_1^{19} x^7 y^{13}-432229539 v_1^{19} x^6 y^{14}-103060418 v_1^{19} x^5 y^{15}-16318194 v_1^{19} x^4 y^{16}-1576972 v_1^{19} x^3 y^{17}-79606 v_1^{19} x^2 y^{18}-1454 v_1^{19} x y^{19}\right)+d^{21} \left(2206 v_1^{20} x^{20} y+132983 v_1^{20} x^{19} y^2+2895438 v_1^{20} x^{18} y^3+32964477 v_1^{20} x^{17} y^4+229684072 v_1^{20} x^{16} y^5+1067054994 v_1^{20} x^{15} y^6+3482396871 v_1^{20} x^{14} y^7+8254959638 v_1^{20} x^{13} y^8+14521182350 v_1^{20} x^{12} y^9+19201231409 v_1^{20} x^{11} y^{10}+19201231409 v_1^{20} x^{10} y^{11}+14521182350 v_1^{20} x^9 y^{12}+8254959638 v_1^{20} x^8 y^{13}+3482396871 v_1^{20} x^7 y^{14}+1067054994 v_1^{20} x^6 y^{15}+229684072 v_1^{20} x^5 y^{16}+32964477 v_1^{20} x^4 y^{17}+2895438 v_1^{20} x^3 y^{18}+132983 v_1^{20} x^2 y^{19}+2206 v_1^{20} x y^{20}\right)+d^{22} \left(-3350 v_1^{21} x^{21} y-221224 v_1^{21} x^{20} y^2-5269567 v_1^{21} x^{19} y^3-65689701 v_1^{21} x^{18} y^4-502303029 v_1^{21} x^{17} y^5-2569852892 v_1^{21} x^{16} y^6-9278277763 v_1^{21} x^{15} y^7-24471261938 v_1^{21} x^{14} y^8-48234231310 v_1^{21} x^{13} y^9-72085472634 v_1^{21} x^{12} y^{10}-82344826740 v_1^{21} x^{11} y^{11}-72085472634 v_1^{21} x^{10} y^{12}-48234231310 v_1^{21} x^9 y^{13}-24471261938 v_1^{21} x^8 y^{14}-9278277763 v_1^{21} x^7 y^{15}-2569852892 v_1^{21} x^6 y^{16}-502303029 v_1^{21} x^5 y^{17}-65689701 v_1^{21} x^4 y^{18}-5269567 v_1^{21} x^3 y^{19}-221224 v_1^{21} x^2 y^{20}-3350 v_1^{21} x y^{21}\right)+d^{23} \left(5088 v_1^{22} x^{22} y+366561 v_1^{22} x^{21} y^2+9513514 v_1^{22} x^{20} y^3+129295256 v_1^{22} x^{19} y^4+1079943317 v_1^{22} x^{18} y^5+6053073238 v_1^{22} x^{17} y^6+24036231782 v_1^{22} x^{16} y^7+70066929304 v_1^{22} x^{15} y^8+153557898052 v_1^{22} x^{14} y^9+257032174895 v_1^{22} x^{13} y^{10}+331778552977 v_1^{22} x^{12} y^{11}+331778552977 v_1^{22} x^{11} y^{12}+257032174895 v_1^{22} x^{10} y^{13}+153557898052 v_1^{22} x^9 y^{14}+70066929304 v_1^{22} x^8 y^{15}+24036231782 v_1^{22} x^7 y^{16}+6053073238 v_1^{22} x^6 y^{17}+1079943317 v_1^{22} x^5 y^{18}+129295256 v_1^{22} x^4 y^{19}+9513514 v_1^{22} x^3 y^{20}+366561 v_1^{22} x^2 y^{21}+5088 v_1^{22} x y^{22}\right)+O\left(d^{24}\right)$

So far we have only used Method I. To compute the same thing using Method II, run BPSumToOrder[30,1][x,y]. Unlike fglBP, you can list more than two summands when calling BPSumToOrder, e.g. BPSumToOrder[30,1][x,y,z].

Method II excels at high-precision calculations, and at handling more than two summands, for example computing p-series, $$[p](x)=x\Fplus\cdots\Fplus x \quad\text{($p$ times).} $$

Let’s move to the prime p=2, switch to Araki generators, and compute the p-series by running BPSumToOrder[100,1][x,x,x] or equivalently

p=3;gen=Araki;
pSeriesBP[100,1][x]

which outputs

$3 x+v_1 x^3+\frac{9}{8} v_1^2 x^5+\frac{105}{64} v_1^3 x^7+\frac{1377}{512} v_1^4 x^9+\frac{3985389 v_1^5 x^{11}}{839680}+\frac{59092773 v_1^6 x^{13}}{6717440}+\frac{907229781 v_1^7 x^{15}}{53739520}+\frac{2859206553 v_1^8 x^{17}}{85983232}+\frac{47125533252921 v_1^9 x^{19}}{705062502400}+\frac{770136329076849 v_1^{10} x^{21}}{5640500019200}+\frac{12753311865572673 v_1^{11} x^{23}}{45124000153600}+\frac{213532277359138857 v_1^{12} x^{25}}{360992001228800}+\frac{739786458803938484949 v_1^{13} x^{27}}{592026882015232000}+\frac{160172528275426594739975069765697 v_1^{14} x^{29}}{60194116033843632543723683840}+\frac{13738036759250152674233106309048117 v_1^{15} x^{31}}{2407764641353745301748947353600}+\frac{1185477657285968285516675671657275153 v_1^{16} x^{33}}{96310585654149812069957894144000}+\frac{4216662079836460024248686951104873563261 v_1^{17} x^{35}}{157949360472805691794730946396160000}+\frac{14702311640613766553277435605893531072017 v_1^{18} x^{37}}{252718976756489106871569514233856000}+\frac{51481454969227141262970049234204541209581 v_1^{19} x^{39}}{404350362810382570994511222774169600}+\frac{22619865468101997268381331962254155535415917 v_1^{20} x^{41}}{80870072562076514198902244554833920000}+\frac{81780367256576925922593959120230527044587607049 v_1^{21} x^{43}}{132626919001805483286199681069927628800000}+\frac{1446850754068022215344154197219899554433739571041 v_1^{22} x^{45}}{1061015352014443866289597448559421030400000}+\frac{5134276111750341028497261779080422333084076800477 v_1^{23} x^{47}}{1697624563223110186063355917695073648640000}+\frac{456690167246529306226420669455873418326343080577113 v_1^{24} x^{49}}{67904982528924407442534236707802945945600000}+\frac{1669565611681890038520057448914914396263990024439943141 v_1^{25} x^{51}}{111364171347436028205756148200796831350784000000}+\frac{727817101785830204621571412299085854513880916800080117 v_1^{26} x^{53}}{21729594409255810381610955746496942702592000000}+\frac{169814244977278563421836617483275107836618284414581196923503600973849 v_1^{27} x^{55}}{2264582253184894429713717786111977316728786330337673216000000}+\frac{609463945405606309062035428984430796639924562118998968145181222363661 v_1^{28} x^{57}}{3623331605095831087541948457779163706766058128540277145600000}+\frac{11230439210575524257619419784462139227943168786897763521612717937525008269 v_1^{29} x^{59}}{29711319161785814917843977353789142395481676654030272593920000000}+\frac{202232391003004256418106108936578268353191736402021774131378054679681296901 v_1^{30} x^{61}}{237690553294286519342751818830313139163853413232242180751360000000}+\frac{3647430129095356423427669614071855519455147270410494624615116571869971787637 v_1^{31} x^{63}}{1901524426354292154742014550642505113310827305857937446010880000000}+\frac{65881440673225574039174522467643717638054608719738905973342309633526955084893 v_1^{32} x^{65}}{15212195410834337237936116405140040906486618446863499568087040000000}+\frac{244283593110532235430591083138353368072170191211763203057563338040691731389194841 v_1^{33} x^{67}}{24948000473768313070215230904429667086638054252856139291662745600000000}+\frac{884845995963904206064729063646734589517774341598365248314009675623765925443165277 v_1^{34} x^{69}}{39916800758029300912344369447087467338620886804569822866660392960000000}+\frac{16045192773117109726584378363098532358833777543403514716199218943853422453408308269 v_1^{35} x^{71}}{319334406064234407298754955576699738708967094436558582933283143680000000}+\frac{1456453195021108204728173502218102229770819846447193787044959616396498480278838048 777 v_1^{36} x^{73}}{12773376242569376291950198223067989548358683777462343317331325747200000000}+\frac{54263673965181618437973795892274782971393415423638288729048062214411287269753668 68393589 v_1^{37} x^{75}}{20948337037813777118798325085831502859308241395038243040423374225408000000000}+\frac{19744685090892984759126199567593621261169588013339393380889587929721153931776 974856111689 v_1^{38} x^{77}}{33517339260502043390077320137330404574893186232061188864677398760652800000000}+\frac{71915147210074396046915779772281737879438554534983392433332150039293487288889 386012014757 v_1^{39} x^{79}}{53627742816803269424123712219728647319829097971297902183483838017044480000000}+\frac{10412882817149839147666682587021596414901101555118789041971899320645107835607 046488267397589480547838193 v_1^{40} x^{81}}{3407863172909864859794219382673671341575209181355255162571746644049883603440500736000000000}+\frac{877520655355328809430762508324377158669585640123241420133995105 33865924472306769046530973212105631635587260769608465831332732347491987132461 v_1^{41} x^{83}}{12592806659801646509716190767406520881304923590105057362169481545378684534362144919272854388317206040411595182272675840000000000}+\frac{85688261450460475584027958 65834205985031022417188527248262972121889817829004859282410573680361429836946579431131844571128812414099825492607 v_1^{42} x^{85}}{538729696676006267795345059568193406686841650913585341697090119588392921256134542000977727842447317236859686942146560000000000}+\frac{1171334779082591153799419325 354930483616485910905132265325488959505640181098767664753688530138287280428482002067045935025011230619412786801693 v_1^{43} x^{87}}{32237585049092215064873448364560693456140604390668946847153872756169432407967090993338507234092047463453683666618050150400000000}+\frac{53556937408107101850303189 2494088423517613398608111975469092173821135094687728177240210752316090212126710917046369227231039476229290124816503517 v_1^{44} x^{89}}{6447517009818443012974689672912138691228120878133789369430774551233886481593418198667701446818409492690736733323610030080000000000}+\frac{200949060102479039863514 3269557830536276423709841669066835481452339649603074383819927743569717208897889050401197952341205794074775433363983247998969 v_1^{45} x^{91}}{10573927896102246541278491063575907453614118240139414565866470264023573829813205845815030372782191568012808242650720449331200000000000}+\frac{36805281629651020533 002750064833859068632365990794186533139171145441317498336695775284989608711084264956936317437201095201195265298345729650995591953 v_1^{46} x^{93}}{84591423168817972330227928508607259628912945921115316526931762112188590638505646766520242982257532544102465941205763594649600000000000}+\frac{67457317127897383652 9736663813603985590824776936685125595935002591190118923180509191599401262560574536351281068756584622564570150345440659156401962561 v_1^{47} x^{95}}{676731385350543778641823428068858077031303567368922532215454096897508725108045174132161943858060260352819727529646108757196800000000000}+\frac{9897385979815121522 5736052554617268023790878190119292419290707626332114912048284091024976212148802044506375080702777394226982137748619674310517670781 v_1^{48} x^{97}}{43310808662434801833076699396406916930003428311611042061789062201440558406914891144458364406915856662580462561897350960460595200000000}+\frac{46543270964452495233 779587922918083916607930388047754721091419737131820802162836997060732705842704462627860922646178983274751981881010922824510752019859221 v_1^{49} x^{99}}{8878715775799134375780723376263417970650702803880263622666757751295314473417552684613964703417750615828994825188956946894422016000000000000}+O\left(x^{100}\right)$

How do Methods I and II compare in performance? Here is a logarithmic plot of their runtimes when computing the p-series of $\mathrm{BP}\langle1\rangle$ at p=2 to various precisions, with Method I in blue and Method II in orange. As you can see, Method II scales far better. It should be said though that this is a particularly favorable match for Method II: the smaller k is, the better Method II handles $\mathrm{BP}\langle k\rangle$ since this makes the sum on the RHS of Theorem 4.3.9 small. On the other hand, Method II does even better at larger primes.

I was thrilled when I first tried Method II. It feels like a battering ram – sluggish to start, it crushes through high precision calculations.

In general, the code’s ability to compute FGL’s exceeds MathJax’s ability to display them in a browser.

Don’t have Mathematica? Get hold of a Raspberry Pi (which includes it).

p-typical Formal Group Law Lookup

For the prime p= , in terms of the $v_i$’s, the $p$-typical formula group law looks like

$\hspace{-10pt}x+_Fy=$

$(x+y) d-x y v_1 d^2+\left(x^2 y v_1^2+x y^2 v_1^2\right) d^3+\left(x^2 y^2 \left(-4 v_1^3-3 v_2\right)+x^3 y \left(-2 v_1^3-2 v_2\right)+x y^3 \left(-2 v_1^3-2 v_2\right)\right) d^4+\left(x^4 y \left(3 v_1^4+4 v_1 v_2\right)+x y^4 \left(3 v_1^4+4 v_1 v_2\right)+x^3 y^2 \left(10 v_1^4+11 v_1 v_2\right)+x^2 y^3 \left(10 v_1^4+11 v_1 v_2\right)\right) d^5+\left(x^3 y^3 \left(-34 v_1^5-43 v_1^2 v_2\right)+x^4 y^2 \left(-21 v_1^5-28 v_1^2 v_2\right)+x^2 y^4 \left(-21 v_1^5-28 v_1^2 v_2\right)+x^5 y \left(-4 v_1^5-6 v_1^2 v_2\right)+x y^5 \left(-4 v_1^5-6 v_1^2 v_2\right)\right) d^6+\left(x^6 y \left(6 v_1^6+12 v_1^3 v_2+4 v_2^2\right)+x y^6 \left(6 v_1^6+12 v_1^3 v_2+4 v_2^2\right)+x^5 y^2 \left(43 v_1^6+75 v_1^3 v_2+18 v_2^2\right)+x^2 y^5 \left(43 v_1^6+75 v_1^3 v_2+18 v_2^2\right)+x^4 y^3 \left(101 v_1^6+164 v_1^3 v_2+34 v_2^2\right)+x^3 y^4 \left(101 v_1^6+164 v_1^3 v_2+34 v_2^2\right)\right) d^7+\left(x^4 y^4 \left(-394 v_1^7-769 v_1^4 v_2-302 v_1 v_2^2-35 v_3\right)+x^5 y^3 \left(-275 v_1^7-551 v_1^4 v_2-226 v_1 v_2^2-28 v_3\right)+x^3 y^5 \left(-275 v_1^7-551 v_1^4 v_2-226 v_1 v_2^2-28 v_3\right)+x^6 y^2 \left(-88 v_1^7-190 v_1^4 v_2-89 v_1 v_2^2-14 v_3\right)+x^2 y^6 \left(-88 v_1^7-190 v_1^4 v_2-89 v_1 v_2^2-14 v_3\right)+x^7 y \left(-10 v_1^7-24 v_1^4 v_2-14 v_1 v_2^2-4 v_3\right)+x y^7 \left(-10 v_1^7-24 v_1^4 v_2-14 v_1 v_2^2-4 v_3\right)\right) d^8+\left(x^8 y \left(15 v_1^8+40 v_1^5 v_2+28 v_1^2 v_2^2+8 v_1 v_3\right)+x y^8 \left(15 v_1^8+40 v_1^5 v_2+28 v_1^2 v_2^2+8 v_1 v_3\right)+x^7 y^2 \left(169 v_1^8+420 v_1^5 v_2+257 v_1^2 v_2^2+46 v_1 v_3\right)+x^2 y^7 \left(169 v_1^8+420 v_1^5 v_2+257 v_1^2 v_2^2+46 v_1 v_3\right)+x^6 y^3 \left(680 v_1^8+1586 v_1^5 v_2+879 v_1^2 v_2^2+126 v_1 v_3\right)+x^3 y^6 \left(680 v_1^8+1586 v_1^5 v_2+879 v_1^2 v_2^2+126 v_1 v_3\right)+x^5 y^4 \left(1303 v_1^8+2933 v_1^5 v_2+1543 v_1^2 v_2^2+203 v_1 v_3\right)+x^4 y^5 \left(1303 v_1^8+2933 v_1^5 v_2+1543 v_1^2 v_2^2+203 v_1 v_3\right)\right) d^9+\left(x^5 y^5 \left(-5156 v_1^9-13042 v_1^6 v_2-8671 v_1^3 v_2^2-654 v_2^3-1001 v_1^2 v_3\right)+x^6 y^4 \left(-3861 v_1^9-9900 v_1^6 v_2-6707 v_1^3 v_2^2-523 v_2^3-791 v_1^2 v_3\right)+x^4 y^6 \left(-3861 v_1^9-9900 v_1^6 v_2-6707 v_1^3 v_2^2-523 v_2^3-791 v_1^2 v_3\right)+x^7 y^3 \left(-1573 v_1^9-4192 v_1^6 v_2-3001 v_1^3 v_2^2-260 v_2^3-382 v_1^2 v_3\right)+x^3 y^7 \left(-1573 v_1^9-4192 v_1^6 v_2-3001 v_1^3 v_2^2-260 v_2^3-382 v_1^2 v_3\right)+x^8 y^2 \left(-312 v_1^9-880 v_1^6 v_2-688 v_1^3 v_2^2-72 v_2^3-104 v_1^2 v_3\right)+x^2 y^8 \left(-312 v_1^9-880 v_1^6 v_2-688 v_1^3 v_2^2-72 v_2^3-104 v_1^2 v_3\right)+x^9 y \left(-22 v_1^9-66 v_1^6 v_2-58 v_1^3 v_2^2-8 v_2^3-12 v_1^2 v_3\right)+x y^9 \left(-22 v_1^9-66 v_1^6 v_2-58 v_1^3 v_2^2-8 v_2^3-12 v_1^2 v_3\right)\right) d^{10}+\left(x^{10} y \left(34 v_1^{10}+116 v_1^7 v_2+128 v_1^4 v_2^2+40 v_1 v_2^3+24 v_1^3 v_3+16 v_2 v_3\right)+x y^{10} \left(34 v_1^{10}+116 v_1^7 v_2+128 v_1^4 v_2^2+40 v_1 v_2^3+24 v_1^3 v_3+16 v_2 v_3\right)+x^9 y^2 \left(574 v_1^{10}+1837 v_1^7 v_2+1811 v_1^4 v_2^2+456 v_1 v_2^3+254 v_1^3 v_3+120 v_2 v_3\right)+x^2 y^9 \left(574 v_1^{10}+1837 v_1^7 v_2+1811 v_1^4 v_2^2+456 v_1 v_2^3+254 v_1^3 v_3+120 v_2 v_3\right)+x^8 y^3 \left(3506 v_1^{10}+10612 v_1^7 v_2+9596 v_1^4 v_2^2+2060 v_1 v_2^3+1144 v_1^3 v_3+424 v_2 v_3\right)+x^3 y^8 \left(3506 v_1^{10}+10612 v_1^7 v_2+9596 v_1^4 v_2^2+2060 v_1 v_2^3+1144 v_1^3 v_3+424 v_2 v_3\right)+x^7 y^4 \left(10643 v_1^{10}+30921 v_1^7 v_2+26363 v_1^4 v_2^2+5103 v_1 v_2^3+2906 v_1^3 v_3+918 v_2 v_3\right)+x^4 y^7 \left(10643 v_1^{10}+30921 v_1^7 v_2+26363 v_1^4 v_2^2+5103 v_1 v_2^3+2906 v_1^3 v_3+918 v_2 v_3\right)+x^6 y^5 \left(18115 v_1^{10}+51502 v_1^7 v_2+42619 v_1^4 v_2^2+7847 v_1 v_2^3+4557 v_1^3 v_3+1330 v_2 v_3\right)+x^5 y^6 \left(18115 v_1^{10}+51502 v_1^7 v_2+42619 v_1^4 v_2^2+7847 v_1 v_2^3+4557 v_1^3 v_3+1330 v_2 v_3\right)\right) d^{11}+\left(x^6 y^6 \left(-73850 v_1^{11}-231765 v_1^8 v_2-226598 v_1^5 v_2^2-62707 v_1^2 v_2^3-22715 v_1^4 v_3-13685 v_1 v_2 v_3\right)+x^7 y^5 \left(-58002 v_1^{11}-183665 v_1^8 v_2-181684 v_1^5 v_2^2-51133 v_1^2 v_2^3-18408 v_1^4 v_3-11384 v_1 v_2 v_3\right)+x^5 y^7 \left(-58002 v_1^{11}-183665 v_1^8 v_2-181684 v_1^5 v_2^2-51133 v_1^2 v_2^3-18408 v_1^4 v_3-11384 v_1 v_2 v_3\right)+x^8 y^4 \left(-27636 v_1^{11}-89822 v_1^8 v_2-91989 v_1^5 v_2^2-27241 v_1^2 v_2^3-9682 v_1^4 v_3-6470 v_1 v_2 v_3\right)+x^4 y^8 \left(-27636 v_1^{11}-89822 v_1^8 v_2-91989 v_1^5 v_2^2-27241 v_1^2 v_2^3-9682 v_1^4 v_3-6470 v_1 v_2 v_3\right)+x^9 y^3 \left(-7546 v_1^{11}-25549 v_1^8 v_2-27679 v_1^5 v_2^2-8920 v_1^2 v_2^3-3170 v_1^4 v_3-2400 v_1 v_2 v_3\right)+x^3 y^9 \left(-7546 v_1^{11}-25549 v_1^8 v_2-27679 v_1^5 v_2^2-8920 v_1^2 v_2^3-3170 v_1^4 v_3-2400 v_1 v_2 v_3\right)+x^{10} y^2 \left(-1039 v_1^{11}-3704 v_1^8 v_2-4325 v_1^5 v_2^2-1564 v_1^2 v_2^3-582 v_1^4 v_3-520 v_1 v_2 v_3\right)+x^2 y^{10} \left(-1039 v_1^{11}-3704 v_1^8 v_2-4325 v_1^5 v_2^2-1564 v_1^2 v_2^3-582 v_1^4 v_3-520 v_1 v_2 v_3\right)+x^{11} y \left(-52 v_1^{11}-196 v_1^8 v_2-250 v_1^5 v_2^2-104 v_1^2 v_2^3-44 v_1^4 v_3-48 v_1 v_2 v_3\right)+x y^{11} \left(-52 v_1^{11}-196 v_1^8 v_2-250 v_1^5 v_2^2-104 v_1^2 v_2^3-44 v_1^4 v_3-48 v_1 v_2 v_3\right)\right) d^{12}+\left(x^{12} y \left(78 v_1^{12}+320 v_1^9 v_2+460 v_1^6 v_2^2+240 v_1^3 v_2^3+16 v_2^4+72 v_1^5 v_3+96 v_1^2 v_2 v_3\right)+x y^{12} \left(78 v_1^{12}+320 v_1^9 v_2+460 v_1^6 v_2^2+240 v_1^3 v_2^3+16 v_2^4+72 v_1^5 v_3+96 v_1^2 v_2 v_3\right)+x^{11} y^2 \left(1840 v_1^{12}+7198 v_1^9 v_2+9631 v_1^6 v_2^2+4508 v_1^3 v_2^3+240 v_2^4+1202 v_1^5 v_3+1416 v_1^2 v_2 v_3\right)+x^2 y^{11} \left(1840 v_1^{12}+7198 v_1^9 v_2+9631 v_1^6 v_2^2+4508 v_1^3 v_2^3+240 v_2^4+1202 v_1^5 v_3+1416 v_1^2 v_2 v_3\right)+x^{10} y^3 \left(15709 v_1^{12}+58672 v_1^9 v_2+73615 v_1^6 v_2^2+31416 v_1^3 v_2^3+1400 v_2^4+7934 v_1^5 v_3+8352 v_1^2 v_2 v_3\right)+x^3 y^{10} \left(15709 v_1^{12}+58672 v_1^9 v_2+73615 v_1^6 v_2^2+31416 v_1^3 v_2^3+1400 v_2^4+7934 v_1^5 v_3+8352 v_1^2 v_2 v_3\right)+x^9 y^4 \left(68193 v_1^{12}+244934 v_1^9 v_2+291819 v_1^6 v_2^2+115864 v_1^3 v_2^3+4546 v_2^4+28937 v_1^5 v_3+27744 v_1^2 v_2 v_3\right)+x^4 y^9 \left(68193 v_1^{12}+244934 v_1^9 v_2+291819 v_1^6 v_2^2+115864 v_1^3 v_2^3+4546 v_2^4+28937 v_1^5 v_3+27744 v_1^2 v_2 v_3\right)+x^8 y^5 \left(172287 v_1^{12}+601728 v_1^9 v_2+691569 v_1^6 v_2^2+261417 v_1^3 v_2^3+9462 v_2^4+65784 v_1^5 v_3+58986 v_1^2 v_2 v_3\right)+x^5 y^8 \left(172287 v_1^{12}+601728 v_1^9 v_2+691569 v_1^6 v_2^2+261417 v_1^3 v_2^3+9462 v_2^4+65784 v_1^5 v_3+58986 v_1^2 v_2 v_3\right)+x^7 y^6 \left(270163 v_1^{12}+929923 v_1^9 v_2+1049281 v_1^6 v_2^2+386948 v_1^3 v_2^3+13470 v_2^4+98170 v_1^5 v_3+85011 v_1^2 v_2 v_3\right)+x^6 y^7 \left(270163 v_1^{12}+929923 v_1^9 v_2+1049281 v_1^6 v_2^2+386948 v_1^3 v_2^3+13470 v_2^4+98170 v_1^5 v_3+85011 v_1^2 v_2 v_3\right)\right) d^{13}+O[d]^{14}$
$(x+y) d+\left(-x^2 y v_1-x y^2 v_1\right) d^3+\left(x^4 y v_1^2+3 x^3 y^2 v_1^2+3 x^2 y^3 v_1^2+x y^4 v_1^2\right) d^5+\left(-x^6 y v_1^3-6 x^5 y^2 v_1^3-13 x^4 y^3 v_1^3-13 x^3 y^4 v_1^3-6 x^2 y^5 v_1^3-x y^6 v_1^3\right) d^7+\left(x^5 y^4 \left(52 v_1^4-42 v_2\right)+x^4 y^5 \left(52 v_1^4-42 v_2\right)+x^6 y^3 \left(27 v_1^4-28 v_2\right)+x^3 y^6 \left(27 v_1^4-28 v_2\right)+x^7 y^2 \left(6 v_1^4-12 v_2\right)+x^2 y^7 \left(6 v_1^4-12 v_2\right)-3 x^8 y v_2-3 x y^8 v_2\right) d^9+\left(45 x^9 y^2 v_1 v_2+45 x^2 y^9 v_1 v_2+x^{10} y \left(v_1^5+6 v_1 v_2\right)+x y^{10} \left(v_1^5+6 v_1 v_2\right)+x^8 y^3 \left(-27 v_1^5+163 v_1 v_2\right)+x^3 y^8 \left(-27 v_1^5+163 v_1 v_2\right)+x^7 y^4 \left(-106 v_1^5+362 v_1 v_2\right)+x^4 y^7 \left(-106 v_1^5+362 v_1 v_2\right)+x^6 y^5 \left(-192 v_1^5+532 v_1 v_2\right)+x^5 y^6 \left(-192 v_1^5+532 v_1 v_2\right)\right) d^{11}+\left(x^7 y^6 \left(484 v_1^6-5164 v_1^2 v_2\right)+x^6 y^7 \left(484 v_1^6-5164 v_1^2 v_2\right)+x^8 y^5 \left(246 v_1^6-3637 v_1^2 v_2\right)+x^5 y^8 \left(246 v_1^6-3637 v_1^2 v_2\right)+x^9 y^4 \left(30 v_1^6-1770 v_1^2 v_2\right)+x^4 y^9 \left(30 v_1^6-1770 v_1^2 v_2\right)+x^{10} y^3 \left(-31 v_1^6-568 v_1^2 v_2\right)+x^3 y^{10} \left(-31 v_1^6-568 v_1^2 v_2\right)+x^{11} y^2 \left(-15 v_1^6-108 v_1^2 v_2\right)+x^2 y^{11} \left(-15 v_1^6-108 v_1^2 v_2\right)+x^{12} y \left(-2 v_1^6-9 v_1^2 v_2\right)+x y^{12} \left(-2 v_1^6-9 v_1^2 v_2\right)\right) d^{13}+\left(x^{14} y \left(3 v_1^7+12 v_1^3 v_2\right)+x y^{14} \left(3 v_1^7+12 v_1^3 v_2\right)+x^{13} y^2 \left(42 v_1^7+210 v_1^3 v_2\right)+x^2 y^{13} \left(42 v_1^7+210 v_1^3 v_2\right)+x^{12} y^3 \left(226 v_1^7+1517 v_1^3 v_2\right)+x^3 y^{12} \left(226 v_1^7+1517 v_1^3 v_2\right)+x^{11} y^4 \left(655 v_1^7+6333 v_1^3 v_2\right)+x^4 y^{11} \left(655 v_1^7+6333 v_1^3 v_2\right)+x^{10} y^5 \left(1168 v_1^7+17350 v_1^3 v_2\right)+x^5 y^{10} \left(1168 v_1^7+17350 v_1^3 v_2\right)+x^9 y^6 \left(1412 v_1^7+33137 v_1^3 v_2\right)+x^6 y^9 \left(1412 v_1^7+33137 v_1^3 v_2\right)+x^8 y^7 \left(1370 v_1^7+45493 v_1^3 v_2\right)+x^7 y^8 \left(1370 v_1^7+45493 v_1^3 v_2\right)\right) d^{15}+\left(x^{16} y \left(-3 v_1^8-9 v_1^4 v_2+9 v_2^2\right)+x y^{16} \left(-3 v_1^8-9 v_1^4 v_2+9 v_2^2\right)+x^{15} y^2 \left(-72 v_1^8-288 v_1^4 v_2+108 v_2^2\right)+x^2 y^{15} \left(-72 v_1^8-288 v_1^4 v_2+108 v_2^2\right)+x^{14} y^3 \left(-613 v_1^8-3010 v_1^4 v_2+624 v_2^2\right)+x^3 y^{14} \left(-613 v_1^8-3010 v_1^4 v_2+624 v_2^2\right)+x^{13} y^4 \left(-2842 v_1^8-16940 v_1^4 v_2+2310 v_2^2\right)+x^4 y^{13} \left(-2842 v_1^8-16940 v_1^4 v_2+2310 v_2^2\right)+x^{12} y^5 \left(-8500 v_1^8-60962 v_1^4 v_2+6132 v_2^2\right)+x^5 y^{12} \left(-8500 v_1^8-60962 v_1^4 v_2+6132 v_2^2\right)+x^{11} y^6 \left(-17987 v_1^8-152080 v_1^4 v_2+12348 v_2^2\right)+x^6 y^{11} \left(-17987 v_1^8-152080 v_1^4 v_2+12348 v_2^2\right)+x^{10} y^7 \left(-28612 v_1^8-274530 v_1^4 v_2+19440 v_2^2\right)+x^7 y^{10} \left(-28612 v_1^8-274530 v_1^4 v_2+19440 v_2^2\right)+x^9 y^8 \left(-35675 v_1^8-366965 v_1^4 v_2+24309 v_2^2\right)+x^8 y^9 \left(-35675 v_1^8-366965 v_1^4 v_2+24309 v_2^2\right)\right) d^{17}+\left(x^{10} y^9 \left(388687 v_1^9+2747309 v_1^5 v_2-608258 v_1 v_2^2\right)+x^9 y^{10} \left(388687 v_1^9+2747309 v_1^5 v_2-608258 v_1 v_2^2\right)+x^{11} y^8 \left(306815 v_1^9+2099671 v_1^5 v_2-490014 v_1 v_2^2\right)+x^8 y^{11} \left(306815 v_1^9+2099671 v_1^5 v_2-490014 v_1 v_2^2\right)+x^{12} y^7 \left(189242 v_1^9+1216154 v_1^5 v_2-316276 v_1 v_2^2\right)+x^7 y^{12} \left(189242 v_1^9+1216154 v_1^5 v_2-316276 v_1 v_2^2\right)+x^{13} y^6 \left(89278 v_1^9+523992 v_1^5 v_2-161560 v_1 v_2^2\right)+x^6 y^{13} \left(89278 v_1^9+523992 v_1^5 v_2-161560 v_1 v_2^2\right)+x^{14} y^5 \left(31084 v_1^9+162382 v_1^5 v_2-63888 v_1 v_2^2\right)+x^5 y^{14} \left(31084 v_1^9+162382 v_1^5 v_2-63888 v_1 v_2^2\right)+x^{15} y^4 \left(7536 v_1^9+34080 v_1^5 v_2-18828 v_1 v_2^2\right)+x^4 y^{15} \left(7536 v_1^9+34080 v_1^5 v_2-18828 v_1 v_2^2\right)+x^{16} y^3 \left(1150 v_1^9+4305 v_1^5 v_2-3867 v_1 v_2^2\right)+x^3 y^{16} \left(1150 v_1^9+4305 v_1^5 v_2-3867 v_1 v_2^2\right)+x^{17} y^2 \left(90 v_1^9+243 v_1^5 v_2-486 v_1 v_2^2\right)+x^2 y^{17} \left(90 v_1^9+243 v_1^5 v_2-486 v_1 v_2^2\right)+x^{18} y \left(2 v_1^9-27 v_1 v_2^2\right)+x y^{18} \left(2 v_1^9-27 v_1 v_2^2\right)\right) d^{19}+\left(x^{20} y \left(15 v_1^6 v_2+54 v_1^2 v_2^2\right)+x y^{20} \left(15 v_1^6 v_2+54 v_1^2 v_2^2\right)+x^{19} y^2 \left(-75 v_1^{10}+60 v_1^6 v_2+1350 v_1^2 v_2^2\right)+x^2 y^{19} \left(-75 v_1^{10}+60 v_1^6 v_2+1350 v_1^2 v_2^2\right)+x^{18} y^3 \left(-1594 v_1^{10}-3264 v_1^6 v_2+14121 v_1^2 v_2^2\right)+x^3 y^{18} \left(-1594 v_1^{10}-3264 v_1^6 v_2+14121 v_1^2 v_2^2\right)+x^{17} y^4 \left(-14730 v_1^{10}-47088 v_1^6 v_2+87561 v_1^2 v_2^2\right)+x^4 y^{17} \left(-14730 v_1^{10}-47088 v_1^6 v_2+87561 v_1^2 v_2^2\right)+x^{16} y^5 \left(-81106 v_1^{10}-318756 v_1^6 v_2+370854 v_1^2 v_2^2\right)+x^5 y^{16} \left(-81106 v_1^{10}-318756 v_1^6 v_2+370854 v_1^2 v_2^2\right)+x^{15} y^6 \left(-302978 v_1^{10}-1358816 v_1^6 v_2+1155684 v_1^2 v_2^2\right)+x^6 y^{15} \left(-302978 v_1^{10}-1358816 v_1^6 v_2+1155684 v_1^2 v_2^2\right)+x^{14} y^7 \left(-822816 v_1^{10}-4051162 v_1^6 v_2+2767888 v_1^2 v_2^2\right)+x^7 y^{14} \left(-822816 v_1^{10}-4051162 v_1^6 v_2+2767888 v_1^2 v_2^2\right)+x^{13} y^8 \left(-1692592 v_1^{10}-8902137 v_1^6 v_2+5232925 v_1^2 v_2^2\right)+x^8 y^{13} \left(-1692592 v_1^{10}-8902137 v_1^6 v_2+5232925 v_1^2 v_2^2\right)+x^{12} y^9 \left(-2704615 v_1^{10}-14847394 v_1^6 v_2+7938873 v_1^2 v_2^2\right)+x^9 y^{12} \left(-2704615 v_1^{10}-14847394 v_1^6 v_2+7938873 v_1^2 v_2^2\right)+x^{11} y^{10} \left(-3407106 v_1^{10}-19104154 v_1^6 v_2+9757046 v_1^2 v_2^2\right)+x^{10} y^{11} \left(-3407106 v_1^{10}-19104154 v_1^6 v_2+9757046 v_1^2 v_2^2\right)\right) d^{21}+\left(x^{12} y^{11} \left(26625777 v_1^{11}+121340063 v_1^7 v_2-127710264 v_1^3 v_2^2\right)+x^{11} y^{12} \left(26625777 v_1^{11}+121340063 v_1^7 v_2-127710264 v_1^3 v_2^2\right)+x^{13} y^{10} \left(21339672 v_1^{11}+95416130 v_1^7 v_2-105024048 v_1^3 v_2^2\right)+x^{10} y^{13} \left(21339672 v_1^{11}+95416130 v_1^7 v_2-105024048 v_1^3 v_2^2\right)+x^{14} y^9 \left(13632623 v_1^{11}+58574591 v_1^7 v_2-70778604 v_1^3 v_2^2\right)+x^9 y^{14} \left(13632623 v_1^{11}+58574591 v_1^7 v_2-70778604 v_1^3 v_2^2\right)+x^{15} y^8 \left(6860630 v_1^{11}+27617558 v_1^7 v_2-38799876 v_1^3 v_2^2\right)+x^8 y^{15} \left(6860630 v_1^{11}+27617558 v_1^7 v_2-38799876 v_1^3 v_2^2\right)+x^{16} y^7 \left(2665810 v_1^{11}+9701268 v_1^7 v_2-17086090 v_1^3 v_2^2\right)+x^7 y^{16} \left(2665810 v_1^{11}+9701268 v_1^7 v_2-17086090 v_1^3 v_2^2\right)+x^{17} y^6 \left(774174 v_1^{11}+2394027 v_1^7 v_2-5927094 v_1^3 v_2^2\right)+x^6 y^{17} \left(774174 v_1^{11}+2394027 v_1^7 v_2-5927094 v_1^3 v_2^2\right)+x^{18} y^5 \left(159130 v_1^{11}+360792 v_1^7 v_2-1571454 v_1^3 v_2^2\right)+x^5 y^{18} \left(159130 v_1^{11}+360792 v_1^7 v_2-1571454 v_1^3 v_2^2\right)+x^{19} y^4 \left(20915 v_1^{11}+16490 v_1^7 v_2-303600 v_1^3 v_2^2\right)+x^4 y^{19} \left(20915 v_1^{11}+16490 v_1^7 v_2-303600 v_1^3 v_2^2\right)+x^{20} y^3 \left(1368 v_1^{11}-4475 v_1^7 v_2-39462 v_1^3 v_2^2\right)+x^3 y^{20} \left(1368 v_1^{11}-4475 v_1^7 v_2-39462 v_1^3 v_2^2\right)+x^{21} y^2 \left(-792 v_1^7 v_2-2970 v_1^3 v_2^2\right)+x^2 y^{21} \left(-792 v_1^7 v_2-2970 v_1^3 v_2^2\right)+x^{22} y \left(-3 v_1^{11}-36 v_1^7 v_2-90 v_1^3 v_2^2\right)+x y^{22} \left(-3 v_1^{11}-36 v_1^7 v_2-90 v_1^3 v_2^2\right)\right) d^{23}+O[d]^{24}$
$(x+y) d+\left(-x^4 y v_1-2 x^3 y^2 v_1-2 x^2 y^3 v_1-x y^4 v_1\right) d^5+\left(x^8 y v_1^2+6 x^7 y^2 v_1^2+16 x^6 y^3 v_1^2+25 x^5 y^4 v_1^2+25 x^4 y^5 v_1^2+16 x^3 y^6 v_1^2+6 x^2 y^7 v_1^2+x y^8 v_1^2\right) d^9+\left(-x^{12} y v_1^3-12 x^{11} y^2 v_1^3-60 x^{10} y^3 v_1^3-175 x^9 y^4 v_1^3-340 x^8 y^5 v_1^3-468 x^7 y^6 v_1^3-468 x^6 y^7 v_1^3-340 x^5 y^8 v_1^3-175 x^4 y^9 v_1^3-60 x^3 y^{10} v_1^3-12 x^2 y^{11} v_1^3-x y^{12} v_1^3\right) d^{13}+\left(x^{16} y v_1^4+20 x^{15} y^2 v_1^4+160 x^{14} y^3 v_1^4+735 x^{13} y^4 v_1^4+2251 x^{12} y^5 v_1^4+4968 x^{11} y^6 v_1^4+8256 x^{10} y^7 v_1^4+10585 x^9 y^8 v_1^4+10585 x^8 y^9 v_1^4+8256 x^7 y^{10} v_1^4+4968 x^6 y^{11} v_1^4+2251 x^5 y^{12} v_1^4+735 x^4 y^{13} v_1^4+160 x^3 y^{14} v_1^4+20 x^2 y^{15} v_1^4+x y^{16} v_1^4\right) d^{17}+\left(-x^{20} y v_1^5-30 x^{19} y^2 v_1^5-350 x^{18} y^3 v_1^5-2310 x^{17} y^4 v_1^5-10105 x^{16} y^5 v_1^5-31912 x^{15} y^6 v_1^5-76596 x^{14} y^7 v_1^5-144348 x^{13} y^8 v_1^5-218026 x^{12} y^9 v_1^5-267186 x^{11} y^{10} v_1^5-267186 x^{10} y^{11} v_1^5-218026 x^9 y^{12} v_1^5-144348 x^8 y^{13} v_1^5-76596 x^7 y^{14} v_1^5-31912 x^6 y^{15} v_1^5-10105 x^5 y^{16} v_1^5-2310 x^4 y^{17} v_1^5-350 x^3 y^{18} v_1^5-30 x^2 y^{19} v_1^5-x y^{20} v_1^5\right) d^{21}+\left(x^{13} y^{12} \left(7037846 v_1^6-1040060 v_2\right)+x^{12} y^{13} \left(7037846 v_1^6-1040060 v_2\right)+x^{14} y^{11} \left(5922156 v_1^6-891480 v_2\right)+x^{11} y^{14} \left(5922156 v_1^6-891480 v_2\right)+x^{15} y^{10} \left(4178890 v_1^6-653752 v_2\right)+x^{10} y^{15} \left(4178890 v_1^6-653752 v_2\right)+x^{16} y^9 \left(2454920 v_1^6-408595 v_2\right)+x^9 y^{16} \left(2454920 v_1^6-408595 v_2\right)+x^{17} y^8 \left(1186548 v_1^6-216315 v_2\right)+x^8 y^{17} \left(1186548 v_1^6-216315 v_2\right)+x^{18} y^7 \left(463550 v_1^6-96140 v_2\right)+x^7 y^{18} \left(463550 v_1^6-96140 v_2\right)+x^{19} y^6 \left(142592 v_1^6-35420 v_2\right)+x^6 y^{19} \left(142592 v_1^6-35420 v_2\right)+x^{20} y^5 \left(33205 v_1^6-10626 v_2\right)+x^5 y^{20} \left(33205 v_1^6-10626 v_2\right)+x^{21} y^4 \left(5500 v_1^6-2530 v_2\right)+x^4 y^{21} \left(5500 v_1^6-2530 v_2\right)+x^{22} y^3 \left(580 v_1^6-460 v_2\right)+x^3 y^{22} \left(580 v_1^6-460 v_2\right)+x^{23} y^2 \left(30 v_1^6-60 v_2\right)+x^2 y^{23} \left(30 v_1^6-60 v_2\right)-5 x^{24} y v_2-5 x y^{24} v_2\right) d^{25}+\left(x^{28} y \left(v_1^7+10 v_1 v_2\right)+x y^{28} \left(v_1^7+10 v_1 v_2\right)+x^{27} y^2 \left(-14 v_1^7+210 v_1 v_2\right)+x^2 y^{27} \left(-14 v_1^7+210 v_1 v_2\right)+x^{26} y^3 \left(-704 v_1^7+2360 v_1 v_2\right)+x^3 y^{26} \left(-704 v_1^7+2360 v_1 v_2\right)+x^{25} y^4 \left(-10075 v_1^7+17875 v_1 v_2\right)+x^4 y^{25} \left(-10075 v_1^7+17875 v_1 v_2\right)+x^{24} y^5 \left(-83580 v_1^7+100001 v_1 v_2\right)+x^5 y^{24} \left(-83580 v_1^7+100001 v_1 v_2\right)+x^{23} y^6 \left(-476912 v_1^7+435404 v_1 v_2\right)+x^6 y^{23} \left(-476912 v_1^7+435404 v_1 v_2\right)+x^{22} y^7 \left(-2030448 v_1^7+1526556 v_1 v_2\right)+x^7 y^{22} \left(-2030448 v_1^7+1526556 v_1 v_2\right)+x^{21} y^8 \left(-6768685 v_1^7+4413079 v_1 v_2\right)+x^8 y^{21} \left(-6768685 v_1^7+4413079 v_1 v_2\right)+x^{20} y^9 \left(-18235685 v_1^7+10699876 v_1 v_2\right)+x^9 y^{20} \left(-18235685 v_1^7+10699876 v_1 v_2\right)+x^{19} y^{10} \left(-40583850 v_1^7+22032252 v_1 v_2\right)+x^{10} y^{19} \left(-40583850 v_1^7+22032252 v_1 v_2\right)+x^{18} y^{11} \left(-75775238 v_1^7+38886008 v_1 v_2\right)+x^{11} y^{18} \left(-75775238 v_1^7+38886008 v_1 v_2\right)+x^{17} y^{12} \left(-120005378 v_1^7+59224862 v_1 v_2\right)+x^{12} y^{17} \left(-120005378 v_1^7+59224862 v_1 v_2\right)+x^{16} y^{13} \left(-162416316 v_1^7+78205083 v_1 v_2\right)+x^{13} y^{16} \left(-162416316 v_1^7+78205083 v_1 v_2\right)+x^{15} y^{14} \left(-188735180 v_1^7+89801752 v_1 v_2\right)+x^{14} y^{15} \left(-188735180 v_1^7+89801752 v_1 v_2\right)\right) d^{29}+\left(x^{17} y^{16} \left(5082032154 v_1^8-5200107720 v_1^2 v_2\right)+x^{16} y^{17} \left(5082032154 v_1^8-5200107720 v_1^2 v_2\right)+x^{18} y^{15} \left(4448767094 v_1^8-4591688352 v_1^2 v_2\right)+x^{15} y^{18} \left(4448767094 v_1^8-4591688352 v_1^2 v_2\right)+x^{19} y^{14} \left(3403766940 v_1^8-3576153252 v_1^2 v_2\right)+x^{14} y^{19} \left(3403766940 v_1^8-3576153252 v_1^2 v_2\right)+x^{20} y^{13} \left(2268757917 v_1^8-2451145926 v_1^2 v_2\right)+x^{13} y^{20} \left(2268757917 v_1^8-2451145926 v_1^2 v_2\right)+x^{21} y^{12} \left(1310694438 v_1^8-1473376458 v_1^2 v_2\right)+x^{12} y^{21} \left(1310694438 v_1^8-1473376458 v_1^2 v_2\right)+x^{22} y^{11} \left(651497208 v_1^8-772881972 v_1^2 v_2\right)+x^{11} y^{22} \left(651497208 v_1^8-772881972 v_1^2 v_2\right)+x^{23} y^{10} \left(275822202 v_1^8-351476952 v_1^2 v_2\right)+x^{10} y^{23} \left(275822202 v_1^8-351476952 v_1^2 v_2\right)+x^{24} y^9 \left(98099560 v_1^8-137368626 v_1^2 v_2\right)+x^9 y^{24} \left(98099560 v_1^8-137368626 v_1^2 v_2\right)+x^{25} y^8 \left(28761070 v_1^8-45618625 v_1^2 v_2\right)+x^8 y^{25} \left(28761070 v_1^8-45618625 v_1^2 v_2\right)+x^{26} y^7 \left(6767592 v_1^8-12680988 v_1^2 v_2\right)+x^7 y^{26} \left(6767592 v_1^8-12680988 v_1^2 v_2\right)+x^{27} y^6 \left(1228164 v_1^8-2892092 v_1^2 v_2\right)+x^6 y^{27} \left(1228164 v_1^8-2892092 v_1^2 v_2\right)+x^{28} y^5 \left(160985 v_1^8-526426 v_1^2 v_2\right)+x^5 y^{28} \left(160985 v_1^8-526426 v_1^2 v_2\right)+x^{29} y^4 \left(13350 v_1^8-73500 v_1^2 v_2\right)+x^4 y^{29} \left(13350 v_1^8-73500 v_1^2 v_2\right)+x^{30} y^3 \left(440 v_1^8-7400 v_1^2 v_2\right)+x^3 y^{30} \left(440 v_1^8-7400 v_1^2 v_2\right)+x^{31} y^2 \left(-24 v_1^8-480 v_1^2 v_2\right)+x^2 y^{31} \left(-24 v_1^8-480 v_1^2 v_2\right)+x^{32} y \left(-2 v_1^8-15 v_1^2 v_2\right)+x y^{32} \left(-2 v_1^8-15 v_1^2 v_2\right)\right) d^{33}+\left(x^{36} y \left(3 v_1^9+20 v_1^3 v_2\right)+x y^{36} \left(3 v_1^9+20 v_1^3 v_2\right)+x^{35} y^2 \left(90 v_1^9+900 v_1^3 v_2\right)+x^2 y^{35} \left(90 v_1^9+900 v_1^3 v_2\right)+x^{34} y^3 \left(670 v_1^9+18200 v_1^3 v_2\right)+x^3 y^{34} \left(670 v_1^9+18200 v_1^3 v_2\right)+x^{33} y^4 \left(-7480 v_1^9+229075 v_1^3 v_2\right)+x^4 y^{33} \left(-7480 v_1^9+229075 v_1^3 v_2\right)+x^{32} y^5 \left(-210013 v_1^9+2040021 v_1^3 v_2\right)+x^5 y^{32} \left(-210013 v_1^9+2040021 v_1^3 v_2\right)+x^{31} y^6 \left(-2347776 v_1^9+13774464 v_1^3 v_2\right)+x^6 y^{31} \left(-2347776 v_1^9+13774464 v_1^3 v_2\right)+x^{30} y^7 \left(-17164524 v_1^9+73682400 v_1^3 v_2\right)+x^7 y^{30} \left(-17164524 v_1^9+73682400 v_1^3 v_2\right)+x^{29} y^8 \left(-93126045 v_1^9+321901575 v_1^3 v_2\right)+x^8 y^{29} \left(-93126045 v_1^9+321901575 v_1^3 v_2\right)+x^{28} y^9 \left(-398129180 v_1^9+1174371076 v_1^3 v_2\right)+x^9 y^{28} \left(-398129180 v_1^9+1174371076 v_1^3 v_2\right)+x^{27} y^{10} \left(-1390133088 v_1^9+3638242272 v_1^3 v_2\right)+x^{10} y^{27} \left(-1390133088 v_1^9+3638242272 v_1^3 v_2\right)+x^{26} y^{11} \left(-4060627464 v_1^9+9696014292 v_1^3 v_2\right)+x^{11} y^{26} \left(-4060627464 v_1^9+9696014292 v_1^3 v_2\right)+x^{25} y^{12} \left(-10094057493 v_1^9+22453931955 v_1^3 v_2\right)+x^{12} y^{25} \left(-10094057493 v_1^9+22453931955 v_1^3 v_2\right)+x^{24} y^{13} \left(-21625097192 v_1^9+45544056176 v_1^3 v_2\right)+x^{13} y^{24} \left(-21625097192 v_1^9+45544056176 v_1^3 v_2\right)+x^{23} y^{14} \left(-40307191452 v_1^9+81416189052 v_1^3 v_2\right)+x^{14} y^{23} \left(-40307191452 v_1^9+81416189052 v_1^3 v_2\right)+x^{22} y^{15} \left(-65830199944 v_1^9+128890913572 v_1^3 v_2\right)+x^{15} y^{22} \left(-65830199944 v_1^9+128890913572 v_1^3 v_2\right)+x^{21} y^{16} \left(-94702748416 v_1^9+181362401170 v_1^3 v_2\right)+x^{16} y^{21} \left(-94702748416 v_1^9+181362401170 v_1^3 v_2\right)+x^{20} y^{17} \left(-120448687068 v_1^9+227415961776 v_1^3 v_2\right)+x^{17} y^{20} \left(-120448687068 v_1^9+227415961776 v_1^3 v_2\right)+x^{19} y^{18} \left(-135759799484 v_1^9+254552594852 v_1^3 v_2\right)+x^{18} y^{19} \left(-135759799484 v_1^9+254552594852 v_1^3 v_2\right)\right) d^{37}+O[d]^{38}$
$(x+y) d+\left(-x^6 y v_1-3 x^5 y^2 v_1-5 x^4 y^3 v_1-5 x^3 y^4 v_1-3 x^2 y^5 v_1-x y^6 v_1\right) d^7+\left(x^{12} y v_1^2+9 x^{11} y^2 v_1^2+38 x^{10} y^3 v_1^2+100 x^9 y^4 v_1^2+183 x^8 y^5 v_1^2+245 x^7 y^6 v_1^2+245 x^6 y^7 v_1^2+183 x^5 y^8 v_1^2+100 x^4 y^9 v_1^2+38 x^3 y^{10} v_1^2+9 x^2 y^{11} v_1^2+x y^{12} v_1^2\right) d^{13}+\left(-x^{18} y v_1^3-18 x^{17} y^2 v_1^3-140 x^{16} y^3 v_1^3-660 x^{15} y^4 v_1^3-2163 x^{14} y^5 v_1^3-5292 x^{13} y^6 v_1^3-10073 x^{12} y^7 v_1^3-15291 x^{11} y^8 v_1^3-18778 x^{10} y^9 v_1^3-18778 x^9 y^{10} v_1^3-15291 x^8 y^{11} v_1^3-10073 x^7 y^{12} v_1^3-5292 x^6 y^{13} v_1^3-2163 x^5 y^{14} v_1^3-660 x^4 y^{15} v_1^3-140 x^3 y^{16} v_1^3-18 x^2 y^{17} v_1^3-x y^{18} v_1^3\right) d^{19}+\left(x^{24} y v_1^4+30 x^{23} y^2 v_1^4+370 x^{22} y^3 v_1^4+2695 x^{21} y^4 v_1^4+13482 x^{20} y^5 v_1^4+50232 x^{19} y^6 v_1^4+146417 x^{18} y^7 v_1^4+344727 x^{17} y^8 v_1^4+669895 x^{16} y^9 v_1^4+1090386 x^{15} y^{10} v_1^4+1501281 x^{14} y^{11} v_1^4+1759044 x^{13} y^{12} v_1^4+1759044 x^{12} y^{13} v_1^4+1501281 x^{11} y^{14} v_1^4+1090386 x^{10} y^{15} v_1^4+669895 x^9 y^{16} v_1^4+344727 x^8 y^{17} v_1^4+146417 x^7 y^{18} v_1^4+50232 x^6 y^{19} v_1^4+13482 x^5 y^{20} v_1^4+2695 x^4 y^{21} v_1^4+370 x^3 y^{22} v_1^4+30 x^2 y^{23} v_1^4+x y^{24} v_1^4\right) d^{25}+\left(-x^{30} y v_1^5-45 x^{29} y^2 v_1^5-805 x^{28} y^3 v_1^5-8330 x^{27} y^4 v_1^5-58464 x^{26} y^5 v_1^5-303576 x^{25} y^6 v_1^5-1230617 x^{24} y^7 v_1^5-4036575 x^{23} y^8 v_1^5-10985510 x^{22} y^9 v_1^5-25257694 x^{21} y^{10} v_1^5-49715370 x^{20} y^{11} v_1^5-84595524 x^{19} y^{12} v_1^5-125325240 x^{18} y^{13} v_1^5-162445482 x^{17} y^{14} v_1^5-184804575 x^{16} y^{15} v_1^5-184804575 x^{15} y^{16} v_1^5-162445482 x^{14} y^{17} v_1^5-125325240 x^{13} y^{18} v_1^5-84595524 x^{12} y^{19} v_1^5-49715370 x^{11} y^{20} v_1^5-25257694 x^{10} y^{21} v_1^5-10985510 x^9 y^{22} v_1^5-4036575 x^8 y^{23} v_1^5-1230617 x^7 y^{24} v_1^5-303576 x^6 y^{25} v_1^5-58464 x^5 y^{26} v_1^5-8330 x^4 y^{27} v_1^5-805 x^3 y^{28} v_1^5-45 x^2 y^{29} v_1^5-x y^{30} v_1^5\right) d^{31}+\left(x^{36} y v_1^6+63 x^{35} y^2 v_1^6+1540 x^{34} y^3 v_1^6+21420 x^{33} y^4 v_1^6+199836 x^{32} y^5 v_1^6+1369368 x^{31} y^6 v_1^6+7294961 x^{30} y^7 v_1^6+31392675 x^{29} y^8 v_1^6+112139540 x^{28} y^9 v_1^6+339246152 x^{27} y^{10} v_1^6+882390024 x^{26} y^{11} v_1^6+1996313904 x^{25} y^{12} v_1^6+3963806640 x^{24} y^{13} v_1^6+6955432950 x^{23} y^{14} v_1^6+10843612350 x^{22} y^{15} v_1^6+15079666480 x^{21} y^{16} v_1^6+18759068100 x^{20} y^{17} v_1^6+20913494940 x^{19} y^{18} v_1^6+20913494940 x^{18} y^{19} v_1^6+18759068100 x^{17} y^{20} v_1^6+15079666480 x^{16} y^{21} v_1^6+10843612350 x^{15} y^{22} v_1^6+6955432950 x^{14} y^{23} v_1^6+3963806640 x^{13} y^{24} v_1^6+1996313904 x^{12} y^{25} v_1^6+882390024 x^{11} y^{26} v_1^6+339246152 x^{10} y^{27} v_1^6+112139540 x^9 y^{28} v_1^6+31392675 x^8 y^{29} v_1^6+7294961 x^7 y^{30} v_1^6+1369368 x^6 y^{31} v_1^6+199836 x^5 y^{32} v_1^6+21420 x^4 y^{33} v_1^6+1540 x^3 y^{34} v_1^6+63 x^2 y^{35} v_1^6+x y^{36} v_1^6\right) d^{37}+\left(-x^{42} y v_1^7-84 x^{41} y^2 v_1^7-2688 x^{40} y^3 v_1^7-48300 x^{39} y^4 v_1^7-576576 x^{38} y^5 v_1^7-5021016 x^{37} y^6 v_1^7-33834617 x^{36} y^7 v_1^7-183648447 x^{35} y^8 v_1^7-826327700 x^{34} y^9 v_1^7-3148755096 x^{33} y^{10} v_1^7-10328591052 x^{32} y^{11} v_1^7-29538690480 x^{31} y^{12} v_1^7-74398956984 x^{30} y^{13} v_1^7-166366137285 x^{29} y^{14} v_1^7-332424118596 x^{28} y^{15} v_1^7-596625629828 x^{27} y^{16} v_1^7-965802148056 x^{26} y^{17} v_1^7-1414686478764 x^{25} y^{18} v_1^7-1879716343440 x^{24} y^{19} v_1^7-2269662112260 x^{23} y^{20} v_1^7-2493282220010 x^{22} y^{21} v_1^7-2493282220010 x^{21} y^{22} v_1^7-2269662112260 x^{20} y^{23} v_1^7-1879716343440 x^{19} y^{24} v_1^7-1414686478764 x^{18} y^{25} v_1^7-965802148056 x^{17} y^{26} v_1^7-596625629828 x^{16} y^{27} v_1^7-332424118596 x^{15} y^{28} v_1^7-166366137285 x^{14} y^{29} v_1^7-74398956984 x^{13} y^{30} v_1^7-29538690480 x^{12} y^{31} v_1^7-10328591052 x^{11} y^{32} v_1^7-3148755096 x^{10} y^{33} v_1^7-826327700 x^9 y^{34} v_1^7-183648447 x^8 y^{35} v_1^7-33834617 x^7 y^{36} v_1^7-5021016 x^6 y^{37} v_1^7-576576 x^5 y^{38} v_1^7-48300 x^4 y^{39} v_1^7-2688 x^3 y^{40} v_1^7-84 x^2 y^{41} v_1^7-x y^{42} v_1^7\right) d^{43}+\left(x^{25} y^{24} \left(307645578441240 v_1^8-9029329031268 v_2\right)+x^{24} y^{25} \left(307645578441240 v_1^8-9029329031268 v_2\right)+x^{26} y^{23} \left(283211213315256 v_1^8-8334765259632 v_2\right)+x^{23} y^{26} \left(283211213315256 v_1^8-8334765259632 v_2\right)+x^{27} y^{22} \left(239917206284232 v_1^8-7099985221168 v_2\right)+x^{22} y^{27} \left(239917206284232 v_1^8-7099985221168 v_2\right)+x^{28} y^{21} \left(186879793026199 v_1^8-5578559816632 v_2\right)+x^{21} y^{28} \left(186879793026199 v_1^8-5578559816632 v_2\right)+x^{29} y^{20} \left(133687632583146 v_1^8-4039646763768 v_2\right)+x^{20} y^{29} \left(133687632583146 v_1^8-4039646763768 v_2\right)+x^{30} y^{19} \left(87686379270908 v_1^8-2693097842512 v_2\right)+x^{19} y^{30} \left(87686379270908 v_1^8-2693097842512 v_2\right)+x^{31} y^{18} \left(52620719194412 v_1^8-1650608355088 v_2\right)+x^{18} y^{31} \left(52620719194412 v_1^8-1650608355088 v_2\right)+x^{32} y^{17} \left(28813721993604 v_1^8-928467199737 v_2\right)+x^{17} y^{32} \left(28813721993604 v_1^8-928467199737 v_2\right)+x^{33} y^{16} \left(14349046857348 v_1^8-478301284713 v_2\right)+x^{16} y^{33} \left(14349046857348 v_1^8-478301284713 v_2\right)+x^{34} y^{15} \left(6472553964180 v_1^8-225082957512 v_2\right)+x^{15} y^{34} \left(6472553964180 v_1^8-225082957512 v_2\right)+x^{35} y^{14} \left(2631667867983 v_1^8-96464124648 v_2\right)+x^{14} y^{35} \left(2631667867983 v_1^8-96464124648 v_2\right)+x^{36} y^{13} \left(958762285444 v_1^8-37513826252 v_2\right)+x^{13} y^{36} \left(958762285444 v_1^8-37513826252 v_2\right)+x^{37} y^{12} \left(310727271556 v_1^8-13180533548 v_2\right)+x^{12} y^{37} \left(310727271556 v_1^8-13180533548 v_2\right)+x^{38} y^{11} \left(88796970600 v_1^8-4162273752 v_2\right)+x^{11} y^{38} \left(88796970600 v_1^8-4162273752 v_2\right)+x^{39} y^{10} \left(22132155352 v_1^8-1173974648 v_2\right)+x^{10} y^{39} \left(22132155352 v_1^8-1173974648 v_2\right)+x^{40} y^9 \left(4745852752 v_1^8-293493662 v_2\right)+x^9 y^{40} \left(4745852752 v_1^8-293493662 v_2\right)+x^{41} y^8 \left(860383632 v_1^8-64425438 v_2\right)+x^8 y^{41} \left(860383632 v_1^8-64425438 v_2\right)+x^{42} y^7 \left(128901941 v_1^8-12271512 v_2\right)+x^7 y^{42} \left(128901941 v_1^8-12271512 v_2\right)+x^{43} y^6 \left(15476076 v_1^8-1997688 v_2\right)+x^6 y^{43} \left(15476076 v_1^8-1997688 v_2\right)+x^{44} y^5 \left(1425690 v_1^8-272412 v_2\right)+x^5 y^{44} \left(1425690 v_1^8-272412 v_2\right)+x^{45} y^4 \left(94346 v_1^8-30268 v_2\right)+x^4 y^{45} \left(94346 v_1^8-30268 v_2\right)+x^{46} y^3 \left(4004 v_1^8-2632 v_2\right)+x^3 y^{46} \left(4004 v_1^8-2632 v_2\right)+x^{47} y^2 \left(84 v_1^8-168 v_2\right)+x^2 y^{47} \left(84 v_1^8-168 v_2\right)-7 x^{48} y v_2-7 x y^{48} v_2\right) d^{49}+\left(x^{54} y \left(v_1^9+14 v_1 v_2\right)+x y^{54} \left(v_1^9+14 v_1 v_2\right)+x^{53} y^2 \left(-54 v_1^9+567 v_1 v_2\right)+x^2 y^{53} \left(-54 v_1^9+567 v_1 v_2\right)+x^{52} y^3 \left(-4953 v_1^9+12684 v_1 v_2\right)+x^3 y^{52} \left(-4953 v_1^9+12684 v_1 v_2\right)+x^{51} y^4 \left(-158730 v_1^9+195195 v_1 v_2\right)+x^4 y^{51} \left(-158730 v_1^9+195195 v_1 v_2\right)+x^{50} y^5 \left(-3044733 v_1^9+2263422 v_1 v_2\right)+x^5 y^{50} \left(-3044733 v_1^9+2263422 v_1 v_2\right)+x^{49} y^6 \left(-40848850 v_1^9+20859545 v_1 v_2\right)+x^6 y^{49} \left(-40848850 v_1^9+20859545 v_1 v_2\right)+x^{48} y^7 \left(-414843891 v_1^9+158288327 v_1 v_2\right)+x^7 y^{48} \left(-414843891 v_1^9+158288327 v_1 v_2\right)+x^{47} y^8 \left(-3349446978 v_1^9+1014155358 v_1 v_2\right)+x^8 y^{47} \left(-3349446978 v_1^9+1014155358 v_1 v_2\right)+x^{46} y^9 \left(-22237408754 v_1^9+5589637432 v_1 v_2\right)+x^9 y^{46} \left(-22237408754 v_1^9+5589637432 v_1 v_2\right)+x^{45} y^{10} \left(-124424217202 v_1^9+26886294728 v_1 v_2\right)+x^{10} y^{45} \left(-124424217202 v_1^9+26886294728 v_1 v_2\right)+x^{44} y^{11} \left(-597804745920 v_1^9+114151537452 v_1 v_2\right)+x^{11} y^{44} \left(-597804745920 v_1^9+114151537452 v_1 v_2\right)+x^{43} y^{12} \left(-2502672779066 v_1^9+431735172028 v_1 v_2\right)+x^{12} y^{43} \left(-2502672779066 v_1^9+431735172028 v_1 v_2\right)+x^{42} y^{13} \left(-9236782595334 v_1^9+1465554325992 v_1 v_2\right)+x^{13} y^{42} \left(-9236782595334 v_1^9+1465554325992 v_1 v_2\right)+x^{41} y^{14} \left(-30341628948162 v_1^9+4493090288088 v_1 v_2\right)+x^{14} y^{41} \left(-30341628948162 v_1^9+4493090288088 v_1 v_2\right)+x^{40} y^{15} \left(-89403988040562 v_1^9+12506020315422 v_1 v_2\right)+x^{15} y^{40} \left(-89403988040562 v_1^9+12506020315422 v_1 v_2\right)+x^{39} y^{16} \left(-237847152326873 v_1^9+31742618339113 v_1 v_2\right)+x^{16} y^{39} \left(-237847152326873 v_1^9+31742618339113 v_1 v_2\right)+x^{38} y^{17} \left(-574412297681211 v_1^9+73747074859392 v_1 v_2\right)+x^{17} y^{38} \left(-574412297681211 v_1^9+73747074859392 v_1 v_2\right)+x^{37} y^{18} \left(-1265081442916813 v_1^9+157330090480328 v_1 v_2\right)+x^{18} y^{37} \left(-1265081442916813 v_1^9+157330090480328 v_1 v_2\right)+x^{36} y^{19} \left(-2550660930790619 v_1^9+309047080370452 v_1 v_2\right)+x^{19} y^{36} \left(-2550660930790619 v_1^9+309047080370452 v_1 v_2\right)+x^{35} y^{20} \left(-4723151535892461 v_1^9+560256866543328 v_1 v_2\right)+x^{20} y^{35} \left(-4723151535892461 v_1^9+560256866543328 v_1 v_2\right)+x^{34} y^{21} \left(-8054412906400329 v_1^9+939179230514432 v_1 v_2\right)+x^{21} y^{34} \left(-8054412906400329 v_1^9+939179230514432 v_1 v_2\right)+x^{33} y^{22} \left(-12677643205503735 v_1^9+1458210940536408 v_1 v_2\right)+x^{22} y^{33} \left(-12677643205503735 v_1^9+1458210940536408 v_1 v_2\right)+x^{32} y^{23} \left(-18452285440938333 v_1^9+2099864204185977 v_1 v_2\right)+x^{23} y^{32} \left(-18452285440938333 v_1^9+2099864204185977 v_1 v_2\right)+x^{31} y^{24} \left(-24872274537034212 v_1^9+2807610311679588 v_1 v_2\right)+x^{24} y^{31} \left(-24872274537034212 v_1^9+2807610311679588 v_1 v_2\right)+x^{30} y^{25} \left(-31084016312562592 v_1^9+3488419361153648 v_1 v_2\right)+x^{25} y^{30} \left(-31084016312562592 v_1^9+3488419361153648 v_1 v_2\right)+x^{29} y^{26} \left(-36048207290190276 v_1^9+4030326607541712 v_1 v_2\right)+x^{26} y^{29} \left(-36048207290190276 v_1^9+4030326607541712 v_1 v_2\right)+x^{28} y^{27} \left(-38814771653343742 v_1^9+4331630424575256 v_1 v_2\right)+x^{27} y^{28} \left(-38814771653343742 v_1^9+4331630424575256 v_1 v_2\right)\right) d^{55}+O[d]^{56}$
$(x+y) d+\left(-x^{10} y v_1-5 x^9 y^2 v_1-15 x^8 y^3 v_1-30 x^7 y^4 v_1-42 x^6 y^5 v_1-42 x^5 y^6 v_1-30 x^4 y^7 v_1-15 x^3 y^8 v_1-5 x^2 y^9 v_1-x y^{10} v_1\right) d^{11}+\left(x^{20} y v_1^2+15 x^{19} y^2 v_1^2+110 x^{18} y^3 v_1^2+525 x^{17} y^4 v_1^2+1827 x^{16} y^5 v_1^2+4914 x^{15} y^6 v_1^2+10560 x^{14} y^7 v_1^2+18495 x^{13} y^8 v_1^2+26720 x^{12} y^9 v_1^2+32065 x^{11} y^{10} v_1^2+32065 x^{10} y^{11} v_1^2+26720 x^9 y^{12} v_1^2+18495 x^8 y^{13} v_1^2+10560 x^7 y^{14} v_1^2+4914 x^6 y^{15} v_1^2+1827 x^5 y^{16} v_1^2+525 x^4 y^{17} v_1^2+110 x^3 y^{18} v_1^2+15 x^2 y^{19} v_1^2+x y^{20} v_1^2\right) d^{21}+\left(-x^{30} y v_1^3-30 x^{29} y^2 v_1^3-400 x^{28} y^3 v_1^3-3325 x^{27} y^4 v_1^3-19782 x^{26} y^5 v_1^3-90636 x^{25} y^6 v_1^3-334260 x^{24} y^7 v_1^3-1021275 x^{23} y^8 v_1^3-2636645 x^{22} y^9 v_1^3-5832684 x^{21} y^{10} v_1^3-11167189 x^{20} y^{11} v_1^3-18638700 x^{19} y^{12} v_1^3-27259650 x^{18} y^{13} v_1^3-35058540 x^{17} y^{14} v_1^3-39737331 x^{16} y^{15} v_1^3-39737331 x^{15} y^{16} v_1^3-35058540 x^{14} y^{17} v_1^3-27259650 x^{13} y^{18} v_1^3-18638700 x^{12} y^{19} v_1^3-11167189 x^{11} y^{20} v_1^3-5832684 x^{10} y^{21} v_1^3-2636645 x^9 y^{22} v_1^3-1021275 x^8 y^{23} v_1^3-334260 x^7 y^{24} v_1^3-90636 x^6 y^{25} v_1^3-19782 x^5 y^{26} v_1^3-3325 x^4 y^{27} v_1^3-400 x^3 y^{28} v_1^3-30 x^2 y^{29} v_1^3-x y^{30} v_1^3\right) d^{31}+\left(x^{40} y v_1^4+50 x^{39} y^2 v_1^4+1050 x^{38} y^3 v_1^4+13300 x^{37} y^4 v_1^4+118202 x^{36} y^5 v_1^4+799848 x^{35} y^6 v_1^4+4333500 x^{34} y^7 v_1^4+19438650 x^{33} y^8 v_1^4+73911695 x^{32} y^9 v_1^4+242350108 x^{31} y^{10} v_1^4+694153857 x^{30} y^{11} v_1^4+1754023340 x^{29} y^{12} v_1^4+3940080880 x^{28} y^{13} v_1^4+7915219500 x^{27} y^{14} v_1^4+14287126446 x^{26} y^{15} v_1^4+23256285660 x^{25} y^{16} v_1^4+34235345340 x^{24} y^{17} v_1^4+45673941090 x^{23} y^{18} v_1^4+55306910055 x^{22} y^{19} v_1^4+60845867940 x^{21} y^{20} v_1^4+60845867940 x^{20} y^{21} v_1^4+55306910055 x^{19} y^{22} v_1^4+45673941090 x^{18} y^{23} v_1^4+34235345340 x^{17} y^{24} v_1^4+23256285660 x^{16} y^{25} v_1^4+14287126446 x^{15} y^{26} v_1^4+7915219500 x^{14} y^{27} v_1^4+3940080880 x^{13} y^{28} v_1^4+1754023340 x^{12} y^{29} v_1^4+694153857 x^{11} y^{30} v_1^4+242350108 x^{10} y^{31} v_1^4+73911695 x^9 y^{32} v_1^4+19438650 x^8 y^{33} v_1^4+4333500 x^7 y^{34} v_1^4+799848 x^6 y^{35} v_1^4+118202 x^5 y^{36} v_1^4+13300 x^4 y^{37} v_1^4+1050 x^3 y^{38} v_1^4+50 x^2 y^{39} v_1^4+x y^{40} v_1^4\right) d^{41}+\left(-x^{50} y v_1^5-75 x^{49} y^2 v_1^5-2275 x^{48} y^3 v_1^5-40600 x^{47} y^4 v_1^5-499842 x^{46} y^5 v_1^5-4631970 x^{45} y^6 v_1^5-34110450 x^{44} y^7 v_1^5-207046125 x^{43} y^8 v_1^5-1063132070 x^{42} y^9 v_1^5-4707504802 x^{41} y^{10} v_1^5-18240308119 x^{40} y^{11} v_1^5-62555050400 x^{39} y^{12} v_1^5-191605231930 x^{38} y^{13} v_1^5-527986560460 x^{37} y^{14} v_1^5-1316653942774 x^{36} y^{15} v_1^5-2985727390947 x^{35} y^{16} v_1^5-6181319503485 x^{34} y^{17} v_1^5-11721491484395 x^{33} y^{18} v_1^5-20413653094770 x^{32} y^{19} v_1^5-32722572560860 x^{31} y^{20} v_1^5-48365238083812 x^{30} y^{21} v_1^5-66006957723630 x^{29} y^{22} v_1^5-83269626432760 x^{28} y^{23} v_1^5-97177536089200 x^{27} y^{24} v_1^5-104966446824936 x^{26} y^{25} v_1^5-104966446824936 x^{25} y^{26} v_1^5-97177536089200 x^{24} y^{27} v_1^5-83269626432760 x^{23} y^{28} v_1^5-66006957723630 x^{22} y^{29} v_1^5-48365238083812 x^{21} y^{30} v_1^5-32722572560860 x^{20} y^{31} v_1^5-20413653094770 x^{19} y^{32} v_1^5-11721491484395 x^{18} y^{33} v_1^5-6181319503485 x^{17} y^{34} v_1^5-2985727390947 x^{16} y^{35} v_1^5-1316653942774 x^{15} y^{36} v_1^5-527986560460 x^{14} y^{37} v_1^5-191605231930 x^{13} y^{38} v_1^5-62555050400 x^{12} y^{39} v_1^5-18240308119 x^{11} y^{40} v_1^5-4707504802 x^{10} y^{41} v_1^5-1063132070 x^9 y^{42} v_1^5-207046125 x^8 y^{43} v_1^5-34110450 x^7 y^{44} v_1^5-4631970 x^6 y^{45} v_1^5-499842 x^5 y^{46} v_1^5-40600 x^4 y^{47} v_1^5-2275 x^3 y^{48} v_1^5-75 x^2 y^{49} v_1^5-x y^{50} v_1^5\right) d^{51}+\left(x^{60} y v_1^6+105 x^{59} y^2 v_1^6+4340 x^{58} y^3 v_1^6+103530 x^{57} y^4 v_1^6+1680084 x^{56} y^5 v_1^6+20312754 x^{55} y^6 v_1^6+193710660 x^{54} y^7 v_1^6+1514593080 x^{53} y^8 v_1^6+9982402430 x^{52} y^9 v_1^6+56615997438 x^{51} y^{10} v_1^6+280732659877 x^{50} y^{11} v_1^6+1232274466550 x^{49} y^{12} v_1^6+4836332067105 x^{48} y^{13} v_1^6+17109696497020 x^{47} y^{14} v_1^6+54927036172890 x^{46} y^{15} v_1^6+160900954950960 x^{45} y^{16} v_1^6+432095599759635 x^{44} y^{17} v_1^6+1067955096404625 x^{43} y^{18} v_1^6+2437364192169270 x^{42} y^{19} v_1^6+5151185143538980 x^{41} y^{20} v_1^6+10105431803674350 x^{40} y^{21} v_1^6+18439486163844050 x^{39} y^{22} v_1^6+31350118354387210 x^{38} y^{23} v_1^6+49734561555585060 x^{37} y^{24} v_1^6+73711336128981344 x^{36} y^{25} v_1^6+102164993412262956 x^{35} y^{26} v_1^6+132529409720182545 x^{34} y^{27} v_1^6+161004332684400190 x^{33} y^{28} v_1^6+183264495556558845 x^{32} y^{29} v_1^6+195508719268445492 x^{31} y^{30} v_1^6+195508719268445492 x^{30} y^{31} v_1^6+183264495556558845 x^{29} y^{32} v_1^6+161004332684400190 x^{28} y^{33} v_1^6+132529409720182545 x^{27} y^{34} v_1^6+102164993412262956 x^{26} y^{35} v_1^6+73711336128981344 x^{25} y^{36} v_1^6+49734561555585060 x^{24} y^{37} v_1^6+31350118354387210 x^{23} y^{38} v_1^6+18439486163844050 x^{22} y^{39} v_1^6+10105431803674350 x^{21} y^{40} v_1^6+5151185143538980 x^{20} y^{41} v_1^6+2437364192169270 x^{19} y^{42} v_1^6+1067955096404625 x^{18} y^{43} v_1^6+432095599759635 x^{17} y^{44} v_1^6+160900954950960 x^{16} y^{45} v_1^6+54927036172890 x^{15} y^{46} v_1^6+17109696497020 x^{14} y^{47} v_1^6+4836332067105 x^{13} y^{48} v_1^6+1232274466550 x^{12} y^{49} v_1^6+280732659877 x^{11} y^{50} v_1^6+56615997438 x^{10} y^{51} v_1^6+9982402430 x^9 y^{52} v_1^6+1514593080 x^8 y^{53} v_1^6+193710660 x^7 y^{54} v_1^6+20312754 x^6 y^{55} v_1^6+1680084 x^5 y^{56} v_1^6+103530 x^4 y^{57} v_1^6+4340 x^3 y^{58} v_1^6+105 x^2 y^{59} v_1^6+x y^{60} v_1^6\right) d^{61}+\left(-x^{70} y v_1^7-140 x^{69} y^2 v_1^7-7560 x^{68} y^3 v_1^7-232050 x^{67} y^4 v_1^7-4789554 x^{66} y^5 v_1^7-72997848 x^{65} y^6 v_1^7-871547820 x^{64} y^7 v_1^7-8486975640 x^{63} y^8 v_1^7-69391231910 x^{62} y^9 v_1^7-486841635280 x^{61} y^{10} v_1^7-2980490819157 x^{60} y^{11} v_1^7-16134728562330 x^{59} y^{12} v_1^7-78063177080280 x^{58} y^{13} v_1^7-340514287240200 x^{57} y^{14} v_1^7-1348881327292236 x^{56} y^{15} v_1^7-4881985594593492 x^{55} y^{16} v_1^7-16226754810667905 x^{54} y^{17} v_1^7-49748218947276360 x^{53} y^{18} v_1^7-141208707557022630 x^{52} y^{19} v_1^7-372293798837551500 x^{51} y^{20} v_1^7-914247377198877072 x^{50} y^{21} v_1^7-2096273796314337675 x^{49} y^{22} v_1^7-4497322102613243085 x^{48} y^{23} v_1^7-9044369094117937020 x^{47} y^{24} v_1^7-17077093066841288544 x^{46} y^{25} v_1^7-30315386317682852190 x^{45} y^{26} v_1^7-50657905104266684595 x^{44} y^{27} v_1^7-79765604774875282270 x^{43} y^{28} v_1^7-118454819090401101560 x^{42} y^{29} v_1^7-166028843135960950698 x^{41} y^{30} v_1^7-219775230331639860990 x^{40} y^{31} v_1^7-274889670620351792145 x^{39} y^{32} v_1^7-325008822945815611575 x^{38} y^{33} v_1^7-363342646099235668600 x^{37} y^{34} v_1^7-384154671476102636984 x^{36} y^{35} v_1^7-384154671476102636984 x^{35} y^{36} v_1^7-363342646099235668600 x^{34} y^{37} v_1^7-325008822945815611575 x^{33} y^{38} v_1^7-274889670620351792145 x^{32} y^{39} v_1^7-219775230331639860990 x^{31} y^{40} v_1^7-166028843135960950698 x^{30} y^{41} v_1^7-118454819090401101560 x^{29} y^{42} v_1^7-79765604774875282270 x^{28} y^{43} v_1^7-50657905104266684595 x^{27} y^{44} v_1^7-30315386317682852190 x^{26} y^{45} v_1^7-17077093066841288544 x^{25} y^{46} v_1^7-9044369094117937020 x^{24} y^{47} v_1^7-4497322102613243085 x^{23} y^{48} v_1^7-2096273796314337675 x^{22} y^{49} v_1^7-914247377198877072 x^{21} y^{50} v_1^7-372293798837551500 x^{20} y^{51} v_1^7-141208707557022630 x^{19} y^{52} v_1^7-49748218947276360 x^{18} y^{53} v_1^7-16226754810667905 x^{17} y^{54} v_1^7-4881985594593492 x^{16} y^{55} v_1^7-1348881327292236 x^{15} y^{56} v_1^7-340514287240200 x^{14} y^{57} v_1^7-78063177080280 x^{13} y^{58} v_1^7-16134728562330 x^{12} y^{59} v_1^7-2980490819157 x^{11} y^{60} v_1^7-486841635280 x^{10} y^{61} v_1^7-69391231910 x^9 y^{62} v_1^7-8486975640 x^8 y^{63} v_1^7-871547820 x^7 y^{64} v_1^7-72997848 x^6 y^{65} v_1^7-4789554 x^5 y^{66} v_1^7-232050 x^4 y^{67} v_1^7-7560 x^3 y^{68} v_1^7-140 x^2 y^{69} v_1^7-x y^{70} v_1^7\right) d^{71}+O[d]^{72}$
$(x+y) d+\left(-x^{12} y v_1-6 x^{11} y^2 v_1-22 x^{10} y^3 v_1-55 x^9 y^4 v_1-99 x^8 y^5 v_1-132 x^7 y^6 v_1-132 x^6 y^7 v_1-99 x^5 y^8 v_1-55 x^4 y^9 v_1-22 x^3 y^{10} v_1-6 x^2 y^{11} v_1-x y^{12} v_1\right) d^{13}+\left(x^{24} y v_1^2+18 x^{23} y^2 v_1^2+160 x^{22} y^3 v_1^2+935 x^{21} y^4 v_1^2+4026 x^{20} y^5 v_1^2+13552 x^{19} y^6 v_1^2+36916 x^{18} y^7 v_1^2+83160 x^{17} y^8 v_1^2+157135 x^{16} y^9 v_1^2+251438 x^{15} y^{10} v_1^2+342876 x^{14} y^{11} v_1^2+400023 x^{13} y^{12} v_1^2+400023 x^{12} y^{13} v_1^2+342876 x^{11} y^{14} v_1^2+251438 x^{10} y^{15} v_1^2+157135 x^9 y^{16} v_1^2+83160 x^8 y^{17} v_1^2+36916 x^7 y^{18} v_1^2+13552 x^6 y^{19} v_1^2+4026 x^5 y^{20} v_1^2+935 x^4 y^{21} v_1^2+160 x^3 y^{22} v_1^2+18 x^2 y^{23} v_1^2+x y^{24} v_1^2\right) d^{25}+\left(-x^{36} y v_1^3-36 x^{35} y^2 v_1^3-580 x^{34} y^3 v_1^3-5865 x^{33} y^4 v_1^3-42735 x^{32} y^5 v_1^3-241472 x^{31} y^6 v_1^3-1106292 x^{30} y^7 v_1^3-4231755 x^{29} y^8 v_1^3-13792790 x^{28} y^9 v_1^3-38871250 x^{27} y^{10} v_1^3-95754126 x^{26} y^{11} v_1^3-207867296 x^{25} y^{12} v_1^3-400144823 x^{24} y^{13} v_1^3-686305428 x^{23} y^{14} v_1^3-1052586400 x^{22} y^{15} v_1^3-1447463215 x^{21} y^{16} v_1^3-1788124800 x^{20} y^{17} v_1^3-1986837776 x^{19} y^{18} v_1^3-1986837776 x^{18} y^{19} v_1^3-1788124800 x^{17} y^{20} v_1^3-1447463215 x^{16} y^{21} v_1^3-1052586400 x^{15} y^{22} v_1^3-686305428 x^{14} y^{23} v_1^3-400144823 x^{13} y^{24} v_1^3-207867296 x^{12} y^{25} v_1^3-95754126 x^{11} y^{26} v_1^3-38871250 x^{10} y^{27} v_1^3-13792790 x^9 y^{28} v_1^3-4231755 x^8 y^{29} v_1^3-1106292 x^7 y^{30} v_1^3-241472 x^6 y^{31} v_1^3-42735 x^5 y^{32} v_1^3-5865 x^4 y^{33} v_1^3-580 x^3 y^{34} v_1^3-36 x^2 y^{35} v_1^3-x y^{36} v_1^3\right) d^{37}+\left(x^{48} y v_1^4+60 x^{47} y^2 v_1^4+1520 x^{46} y^3 v_1^4+23345 x^{45} y^4 v_1^4+252840 x^{44} y^5 v_1^4+2095632 x^{43} y^6 v_1^4+13979460 x^{42} y^7 v_1^4+77623920 x^{41} y^8 v_1^4+367412870 x^{40} y^9 v_1^4+1508522730 x^{39} y^{10} v_1^4+5444152896 x^{38} y^{11} v_1^4+17447684800 x^{37} y^{12} v_1^4+50058940023 x^{36} y^{13} v_1^4+129409294056 x^{35} y^{14} v_1^4+303007605780 x^{34} y^{15} v_1^4+645338624265 x^{33} y^{16} v_1^4+1254504266400 x^{32} y^{17} v_1^4+2232216568736 x^{31} y^{18} v_1^4+3644024003312 x^{30} y^{19} v_1^4+5467822470330 x^{29} y^{20} v_1^4+7552244078390 x^{28} y^{21} v_1^4+9612982040800 x^{27} y^{22} v_1^4+11285445678378 x^{26} y^{23} v_1^4+12226195896096 x^{25} y^{24} v_1^4+12226195896096 x^{24} y^{25} v_1^4+11285445678378 x^{23} y^{26} v_1^4+9612982040800 x^{22} y^{27} v_1^4+7552244078390 x^{21} y^{28} v_1^4+5467822470330 x^{20} y^{29} v_1^4+3644024003312 x^{19} y^{30} v_1^4+2232216568736 x^{18} y^{31} v_1^4+1254504266400 x^{17} y^{32} v_1^4+645338624265 x^{16} y^{33} v_1^4+303007605780 x^{15} y^{34} v_1^4+129409294056 x^{14} y^{35} v_1^4+50058940023 x^{13} y^{36} v_1^4+17447684800 x^{12} y^{37} v_1^4+5444152896 x^{11} y^{38} v_1^4+1508522730 x^{10} y^{39} v_1^4+367412870 x^9 y^{40} v_1^4+77623920 x^8 y^{41} v_1^4+13979460 x^7 y^{42} v_1^4+2095632 x^6 y^{43} v_1^4+252840 x^5 y^{44} v_1^4+23345 x^4 y^{45} v_1^4+1520 x^3 y^{46} v_1^4+60 x^2 y^{47} v_1^4+x y^{48} v_1^4\right) d^{49}+\left(-x^{60} y v_1^5-90 x^{59} y^2 v_1^5-3290 x^{58} y^3 v_1^5-71050 x^{57} y^4 v_1^5-1062810 x^{56} y^5 v_1^5-12015192 x^{55} y^6 v_1^5-108384540 x^{54} y^7 v_1^5-809219565 x^{53} y^8 v_1^5-5132816975 x^{52} y^9 v_1^5-28199171000 x^{51} y^{10} v_1^5-136185763896 x^{50} y^{11} v_1^5-584888367700 x^{49} y^{12} v_1^5-2254638172123 x^{48} y^{13} v_1^5-7859597312760 x^{47} y^{14} v_1^5-24929745852240 x^{46} y^{15} v_1^5-72318357945085 x^{45} y^{16} v_1^5-192685451706300 x^{44} y^{17} v_1^5-473241097899416 x^{43} y^{18} v_1^5-1074663346085560 x^{42} y^{19} v_1^5-2262260819893140 x^{41} y^{20} v_1^5-4424347026604010 x^{40} y^{21} v_1^5-8053879635115600 x^{39} y^{22} v_1^5-13667861399466288 x^{38} y^{23} v_1^5-21652998125142300 x^{37} y^{24} v_1^5-32058637598533196 x^{36} y^{25} v_1^5-44400098962038156 x^{35} y^{26} v_1^5-57565129068931300 x^{34} y^{27} v_1^5-69907698175687950 x^{33} y^{28} v_1^5-79554872774991075 x^{32} y^{29} v_1^5-84860836846109632 x^{31} y^{30} v_1^5-84860836846109632 x^{30} y^{31} v_1^5-79554872774991075 x^{29} y^{32} v_1^5-69907698175687950 x^{28} y^{33} v_1^5-57565129068931300 x^{27} y^{34} v_1^5-44400098962038156 x^{26} y^{35} v_1^5-32058637598533196 x^{25} y^{36} v_1^5-21652998125142300 x^{24} y^{37} v_1^5-13667861399466288 x^{23} y^{38} v_1^5-8053879635115600 x^{22} y^{39} v_1^5-4424347026604010 x^{21} y^{40} v_1^5-2262260819893140 x^{20} y^{41} v_1^5-1074663346085560 x^{19} y^{42} v_1^5-473241097899416 x^{18} y^{43} v_1^5-192685451706300 x^{17} y^{44} v_1^5-72318357945085 x^{16} y^{45} v_1^5-24929745852240 x^{15} y^{46} v_1^5-7859597312760 x^{14} y^{47} v_1^5-2254638172123 x^{13} y^{48} v_1^5-584888367700 x^{12} y^{49} v_1^5-136185763896 x^{11} y^{50} v_1^5-28199171000 x^{10} y^{51} v_1^5-5132816975 x^9 y^{52} v_1^5-809219565 x^8 y^{53} v_1^5-108384540 x^7 y^{54} v_1^5-12015192 x^6 y^{55} v_1^5-1062810 x^5 y^{56} v_1^5-71050 x^4 y^{57} v_1^5-3290 x^3 y^{58} v_1^5-90 x^2 y^{59} v_1^5-x y^{60} v_1^5\right) d^{61}+\left(x^{72} y v_1^6+126 x^{71} y^2 v_1^6+6272 x^{70} y^3 v_1^6+180810 x^{69} y^4 v_1^6+3557988 x^{68} y^5 v_1^6+52339056 x^{67} y^6 v_1^6+609344076 x^{66} y^7 v_1^6+5836308192 x^{65} y^8 v_1^6+47283931695 x^{64} y^9 v_1^6+330816333848 x^{63} y^{10} v_1^6+2030861130480 x^{62} y^{11} v_1^6+11077670875180 x^{61} y^{12} v_1^6+54234478432583 x^{60} y^{13} v_1^6+240293076309540 x^{59} y^{14} v_1^6+970082512669410 x^{58} y^{15} v_1^6+3588867466359770 x^{57} y^{16} v_1^6+12225946956321420 x^{56} y^{17} v_1^6+38509520514259536 x^{55} y^{18} v_1^6+112549591115740240 x^{54} y^{19} v_1^6+306146156539753530 x^{53} y^{20} v_1^6+777078930536999255 x^{52} y^{21} v_1^6+1844785885135910080 x^{51} y^{22} v_1^6+4104279978954844248 x^{50} y^{23} v_1^6+8572236003894059700 x^{49} y^{24} v_1^6+16833640058849689516 x^{48} y^{25} v_1^6+31121885275967916420 x^{47} y^{26} v_1^6+54232685076084426560 x^{46} y^{27} v_1^6+89166420795731917190 x^{45} y^{28} v_1^6+138441130096286327100 x^{44} y^{29} v_1^6+203131569039403553472 x^{43} y^{30} v_1^6+281847348557076533000 x^{42} y^{31} v_1^6+370002789358296203340 x^{41} y^{32} v_1^6+459767532273828073350 x^{40} y^{33} v_1^6+540955339160600071700 x^{39} y^{34} v_1^6+602814232269180132096 x^{38} y^{35} v_1^6+636321543290255902660 x^{37} y^{36} v_1^6+636321543290255902660 x^{36} y^{37} v_1^6+602814232269180132096 x^{35} y^{38} v_1^6+540955339160600071700 x^{34} y^{39} v_1^6+459767532273828073350 x^{33} y^{40} v_1^6+370002789358296203340 x^{32} y^{41} v_1^6+281847348557076533000 x^{31} y^{42} v_1^6+203131569039403553472 x^{30} y^{43} v_1^6+138441130096286327100 x^{29} y^{44} v_1^6+89166420795731917190 x^{28} y^{45} v_1^6+54232685076084426560 x^{27} y^{46} v_1^6+31121885275967916420 x^{26} y^{47} v_1^6+16833640058849689516 x^{25} y^{48} v_1^6+8572236003894059700 x^{24} y^{49} v_1^6+4104279978954844248 x^{23} y^{50} v_1^6+1844785885135910080 x^{22} y^{51} v_1^6+777078930536999255 x^{21} y^{52} v_1^6+306146156539753530 x^{20} y^{53} v_1^6+112549591115740240 x^{19} y^{54} v_1^6+38509520514259536 x^{18} y^{55} v_1^6+12225946956321420 x^{17} y^{56} v_1^6+3588867466359770 x^{16} y^{57} v_1^6+970082512669410 x^{15} y^{58} v_1^6+240293076309540 x^{14} y^{59} v_1^6+54234478432583 x^{13} y^{60} v_1^6+11077670875180 x^{12} y^{61} v_1^6+2030861130480 x^{11} y^{62} v_1^6+330816333848 x^{10} y^{63} v_1^6+47283931695 x^9 y^{64} v_1^6+5836308192 x^8 y^{65} v_1^6+609344076 x^7 y^{66} v_1^6+52339056 x^6 y^{67} v_1^6+3557988 x^5 y^{68} v_1^6+180810 x^4 y^{69} v_1^6+6272 x^3 y^{70} v_1^6+126 x^2 y^{71} v_1^6+x y^{72} v_1^6\right) d^{73}+\left(-x^{84} y v_1^7-168 x^{83} y^2 v_1^7-10920 x^{82} y^3 v_1^7-404670 x^{81} y^4 v_1^7-10113642 x^{80} y^5 v_1^7-187187616 x^{79} y^6 v_1^7-2721890028 x^{78} y^7 v_1^7-32374735965 x^{77} y^8 v_1^7-324267783840 x^{76} y^9 v_1^7-2795251491032 x^{75} y^{10} v_1^7-21089394023880 x^{74} y^{11} v_1^7-141128934022440 x^{73} y^{12} v_1^7-846727723327823 x^{72} y^{13} v_1^7-4594892796281196 x^{71} y^{14} v_1^7-22719241748399808 x^{70} y^{15} v_1^7-102985550115581490 x^{69} y^{16} v_1^7-430226120954124180 x^{68} y^{17} v_1^7-1663808199660842928 x^{67} y^{18} v_1^7-5979662716050990736 x^{66} y^{19} v_1^7-20039033117497187508 x^{65} y^{20} v_1^7-62802657609487339995 x^{64} y^{21} v_1^7-184543426066091279680 x^{63} y^{22} v_1^7-509592793949490565440 x^{62} y^{23} v_1^7-1325020281793686766680 x^{61} y^{24} v_1^7-3249883100605928464776 x^{60} y^{25} v_1^7-7530851992287006452250 x^{59} y^{26} v_1^7-16510538365359116960630 x^{58} y^{27} v_1^7-34289565311011555091860 x^{57} y^{28} v_1^7-67535165894310529697070 x^{56} y^{29} v_1^7-126268751749984740521352 x^{55} y^{30} v_1^7-224306983742929090868480 x^{54} y^{31} v_1^7-378887847928116129232245 x^{53} y^{32} v_1^7-608976122515421047539165 x^{52} y^{33} v_1^7-931915013065557851485680 x^{51} y^{34} v_1^7-1358533430868363708542256 x^{50} y^{35} v_1^7-1887482608471602413816560 x^{49} y^{36} v_1^7-2500264099260704511796880 x^{48} y^{37} v_1^7-3158809886595190016478240 x^{47} y^{38} v_1^7-3807274338451108299620560 x^{46} y^{39} v_1^7-4378762889163210875546450 x^{45} y^{40} v_1^7-4806231405799326136772040 x^{44} y^{41} v_1^7-5035236381763940729380080 x^{43} y^{42} v_1^7-5035236381763940729380080 x^{42} y^{43} v_1^7-4806231405799326136772040 x^{41} y^{44} v_1^7-4378762889163210875546450 x^{40} y^{45} v_1^7-3807274338451108299620560 x^{39} y^{46} v_1^7-3158809886595190016478240 x^{38} y^{47} v_1^7-2500264099260704511796880 x^{37} y^{48} v_1^7-1887482608471602413816560 x^{36} y^{49} v_1^7-1358533430868363708542256 x^{35} y^{50} v_1^7-931915013065557851485680 x^{34} y^{51} v_1^7-608976122515421047539165 x^{33} y^{52} v_1^7-378887847928116129232245 x^{32} y^{53} v_1^7-224306983742929090868480 x^{31} y^{54} v_1^7-126268751749984740521352 x^{30} y^{55} v_1^7-67535165894310529697070 x^{29} y^{56} v_1^7-34289565311011555091860 x^{28} y^{57} v_1^7-16510538365359116960630 x^{27} y^{58} v_1^7-7530851992287006452250 x^{26} y^{59} v_1^7-3249883100605928464776 x^{25} y^{60} v_1^7-1325020281793686766680 x^{24} y^{61} v_1^7-509592793949490565440 x^{23} y^{62} v_1^7-184543426066091279680 x^{22} y^{63} v_1^7-62802657609487339995 x^{21} y^{64} v_1^7-20039033117497187508 x^{20} y^{65} v_1^7-5979662716050990736 x^{19} y^{66} v_1^7-1663808199660842928 x^{18} y^{67} v_1^7-430226120954124180 x^{17} y^{68} v_1^7-102985550115581490 x^{16} y^{69} v_1^7-22719241748399808 x^{15} y^{70} v_1^7-4594892796281196 x^{14} y^{71} v_1^7-846727723327823 x^{13} y^{72} v_1^7-141128934022440 x^{12} y^{73} v_1^7-21089394023880 x^{11} y^{74} v_1^7-2795251491032 x^{10} y^{75} v_1^7-324267783840 x^9 y^{76} v_1^7-32374735965 x^8 y^{77} v_1^7-2721890028 x^7 y^{78} v_1^7-187187616 x^6 y^{79} v_1^7-10113642 x^5 y^{80} v_1^7-404670 x^4 y^{81} v_1^7-10920 x^3 y^{82} v_1^7-168 x^2 y^{83} v_1^7-x y^{84} v_1^7\right) d^{85}+O[d]^{86}$
$(x+y) d+\left(-x^{16} y v_1-8 x^{15} y^2 v_1-40 x^{14} y^3 v_1-140 x^{13} y^4 v_1-364 x^{12} y^5 v_1-728 x^{11} y^6 v_1-1144 x^{10} y^7 v_1-1430 x^9 y^8 v_1-1430 x^8 y^9 v_1-1144 x^7 y^{10} v_1-728 x^6 y^{11} v_1-364 x^5 y^{12} v_1-140 x^4 y^{13} v_1-40 x^3 y^{14} v_1-8 x^2 y^{15} v_1-x y^{16} v_1\right) d^{17}+\left(x^{32} y v_1^2+24 x^{31} y^2 v_1^2+288 x^{30} y^3 v_1^2+2300 x^{29} y^4 v_1^2+13704 x^{28} y^5 v_1^2+64680 x^{27} y^6 v_1^2+250624 x^{26} y^7 v_1^2+815958 x^{25} y^8 v_1^2+2267980 x^{24} y^9 v_1^2+5444296 x^{23} y^{10} v_1^2+11384256 x^{22} y^{11} v_1^2+20871500 x^{21} y^{12} v_1^2+33715640 x^{20} y^{13} v_1^2+48165240 x^{19} y^{14} v_1^2+61009312 x^{18} y^{15} v_1^2+68635477 x^{17} y^{16} v_1^2+68635477 x^{16} y^{17} v_1^2+61009312 x^{15} y^{18} v_1^2+48165240 x^{14} y^{19} v_1^2+33715640 x^{13} y^{20} v_1^2+20871500 x^{12} y^{21} v_1^2+11384256 x^{11} y^{22} v_1^2+5444296 x^{10} y^{23} v_1^2+2267980 x^9 y^{24} v_1^2+815958 x^8 y^{25} v_1^2+250624 x^7 y^{26} v_1^2+64680 x^6 y^{27} v_1^2+13704 x^5 y^{28} v_1^2+2300 x^4 y^{29} v_1^2+288 x^3 y^{30} v_1^2+24 x^2 y^{31} v_1^2+x y^{32} v_1^2\right) d^{33}+\left(-x^{48} y v_1^3-48 x^{47} y^2 v_1^3-1040 x^{46} y^3 v_1^3-14260 x^{45} y^4 v_1^3-142044 x^{44} y^5 v_1^3-1106336 x^{43} y^6 v_1^3-7046688 x^{42} y^7 v_1^3-37811070 x^{41} y^8 v_1^3-174518410 x^{40} y^9 v_1^3-703517936 x^{39} y^{10} v_1^3-2505675120 x^{38} y^{11} v_1^3-7955509380 x^{37} y^{12} v_1^3-22676319260 x^{36} y^{13} v_1^3-58358700480 x^{35} y^{14} v_1^3-136231310432 x^{34} y^{15} v_1^3-289560170145 x^{33} y^{16} v_1^3-562156024582 x^{32} y^{17} v_1^3-999449497456 x^{31} y^{18} v_1^3-1630728924208 x^{30} y^{19} v_1^3-2446127101520 x^{29} y^{20} v_1^3-3378005913280 x^{28} y^{21} v_1^3-4299291620080 x^{27} y^{22} v_1^3-5046999878896 x^{26} y^{23} v_1^3-5467585198608 x^{25} y^{24} v_1^3-5467585198608 x^{24} y^{25} v_1^3-5046999878896 x^{23} y^{26} v_1^3-4299291620080 x^{22} y^{27} v_1^3-3378005913280 x^{21} y^{28} v_1^3-2446127101520 x^{20} y^{29} v_1^3-1630728924208 x^{19} y^{30} v_1^3-999449497456 x^{18} y^{31} v_1^3-562156024582 x^{17} y^{32} v_1^3-289560170145 x^{16} y^{33} v_1^3-136231310432 x^{15} y^{34} v_1^3-58358700480 x^{14} y^{35} v_1^3-22676319260 x^{13} y^{36} v_1^3-7955509380 x^{12} y^{37} v_1^3-2505675120 x^{11} y^{38} v_1^3-703517936 x^{10} y^{39} v_1^3-174518410 x^9 y^{40} v_1^3-37811070 x^8 y^{41} v_1^3-7046688 x^7 y^{42} v_1^3-1106336 x^6 y^{43} v_1^3-142044 x^5 y^{44} v_1^3-14260 x^4 y^{45} v_1^3-1040 x^3 y^{46} v_1^3-48 x^2 y^{47} v_1^3-x y^{48} v_1^3\right) d^{49}+\left(x^{64} y v_1^4+80 x^{63} y^2 v_1^4+2720 x^{62} y^3 v_1^4+56420 x^{61} y^4 v_1^4+830368 x^{60} y^5 v_1^4+9410016 x^{59} y^6 v_1^4+86359680 x^{58} y^7 v_1^4+663918750 x^{57} y^8 v_1^4+4379337160 x^{56} y^9 v_1^4+25227806032 x^{55} y^{10} v_1^4+128644705280 x^{54} y^{11} v_1^4+586856683140 x^{53} y^{12} v_1^4+2415245873600 x^{52} y^{13} v_1^4+9029271945280 x^{51} y^{14} v_1^4+30835755924384 x^{50} y^{15} v_1^4+96651297433845 x^{49} y^{16} v_1^4+279145307451547 x^{48} y^{17} v_1^4+745386936034912 x^{47} y^{18} v_1^4+1845482623326240 x^{46} y^{19} v_1^4+4247056160749480 x^{45} y^{20} v_1^4+9104212636060180 x^{44} y^{21} v_1^4+18212724563456352 x^{43} y^{22} v_1^4+34054923355576752 x^{42} y^{23} v_1^4+59601583445126220 x^{41} y^{24} v_1^4+97752064373195454 x^{40} y^{25} v_1^4+150392838074766656 x^{39} y^{26} v_1^4+217238397716757120 x^{38} y^{27} v_1^4+294826914363810280 x^{37} y^{28} v_1^4+376160912923899220 x^{36} y^{29} v_1^4+451394699026020160 x^{35} y^{30} v_1^4+509640109880342256 x^{34} y^{31} v_1^4+541493034158120895 x^{33} y^{32} v_1^4+541493034158120895 x^{32} y^{33} v_1^4+509640109880342256 x^{31} y^{34} v_1^4+451394699026020160 x^{30} y^{35} v_1^4+376160912923899220 x^{29} y^{36} v_1^4+294826914363810280 x^{28} y^{37} v_1^4+217238397716757120 x^{27} y^{38} v_1^4+150392838074766656 x^{26} y^{39} v_1^4+97752064373195454 x^{25} y^{40} v_1^4+59601583445126220 x^{24} y^{41} v_1^4+34054923355576752 x^{23} y^{42} v_1^4+18212724563456352 x^{22} y^{43} v_1^4+9104212636060180 x^{21} y^{44} v_1^4+4247056160749480 x^{20} y^{45} v_1^4+1845482623326240 x^{19} y^{46} v_1^4+745386936034912 x^{18} y^{47} v_1^4+279145307451547 x^{17} y^{48} v_1^4+96651297433845 x^{16} y^{49} v_1^4+30835755924384 x^{15} y^{50} v_1^4+9029271945280 x^{14} y^{51} v_1^4+2415245873600 x^{13} y^{52} v_1^4+586856683140 x^{12} y^{53} v_1^4+128644705280 x^{11} y^{54} v_1^4+25227806032 x^{10} y^{55} v_1^4+4379337160 x^9 y^{56} v_1^4+663918750 x^8 y^{57} v_1^4+86359680 x^7 y^{58} v_1^4+9410016 x^6 y^{59} v_1^4+830368 x^5 y^{60} v_1^4+56420 x^4 y^{61} v_1^4+2720 x^3 y^{62} v_1^4+80 x^2 y^{63} v_1^4+x y^{64} v_1^4\right) d^{65}+\left(-x^{80} y v_1^5-120 x^{79} y^2 v_1^5-5880 x^{78} y^3 v_1^5-171080 x^{77} y^4 v_1^5-3465000 x^{76} y^5 v_1^5-53300016 x^{75} y^6 v_1^5-657431280 x^{74} y^7 v_1^5-6745158090 x^{73} y^8 v_1^5-59090063890 x^{72} y^9 v_1^5-450676266040 x^{71} y^{10} v_1^5-3037555149720 x^{70} y^{11} v_1^5-18305928389840 x^{69} y^{12} v_1^5-99577481173520 x^{68} y^{13} v_1^5-492691323359520 x^{67} y^{14} v_1^5-2231523666930240 x^{66} y^{15} v_1^5-9301686423521085 x^{65} y^{16} v_1^5-35844416926796872 x^{64} y^{17} v_1^5-128192202675757120 x^{63} y^{18} v_1^5-426903838863994320 x^{62} y^{19} v_1^5-1327648956639123440 x^{61} y^{20} v_1^5-3865608324778112000 x^{60} y^{21} v_1^5-10560780883046951712 x^{59} y^{22} v_1^5-27124753710277966320 x^{58} y^{23} v_1^5-65611089716408175600 x^{57} y^{24} v_1^5-149691036616270101072 x^{56} y^{25} v_1^5-322561856309839488928 x^{55} y^{26} v_1^5-657287686384888703760 x^{54} y^{27} v_1^5-1267921078979977235920 x^{53} y^{28} v_1^5-2317611235217592495680 x^{52} y^{29} v_1^5-4017644198223093498432 x^{51} y^{30} v_1^5-6610182338461006123248 x^{50} y^{31} v_1^5-10328951348698611556620 x^{49} y^{32} v_1^5-15337469109710473030470 x^{48} y^{33} v_1^5-21653406812672467041912 x^{47} y^{34} v_1^5-29077882399339596229560 x^{46} y^{35} v_1^5-37155445757507944831240 x^{45} y^{36} v_1^5-45189345312598966071880 x^{44} y^{37} v_1^5-52324711795476625191720 x^{43} y^{38} v_1^5-57691479214846758218472 x^{42} y^{39} v_1^5-60576115169983945969260 x^{41} y^{40} v_1^5-60576115169983945969260 x^{40} y^{41} v_1^5-57691479214846758218472 x^{39} y^{42} v_1^5-52324711795476625191720 x^{38} y^{43} v_1^5-45189345312598966071880 x^{37} y^{44} v_1^5-37155445757507944831240 x^{36} y^{45} v_1^5-29077882399339596229560 x^{35} y^{46} v_1^5-21653406812672467041912 x^{34} y^{47} v_1^5-15337469109710473030470 x^{33} y^{48} v_1^5-10328951348698611556620 x^{32} y^{49} v_1^5-6610182338461006123248 x^{31} y^{50} v_1^5-4017644198223093498432 x^{30} y^{51} v_1^5-2317611235217592495680 x^{29} y^{52} v_1^5-1267921078979977235920 x^{28} y^{53} v_1^5-657287686384888703760 x^{27} y^{54} v_1^5-322561856309839488928 x^{26} y^{55} v_1^5-149691036616270101072 x^{25} y^{56} v_1^5-65611089716408175600 x^{24} y^{57} v_1^5-27124753710277966320 x^{23} y^{58} v_1^5-10560780883046951712 x^{22} y^{59} v_1^5-3865608324778112000 x^{21} y^{60} v_1^5-1327648956639123440 x^{20} y^{61} v_1^5-426903838863994320 x^{19} y^{62} v_1^5-128192202675757120 x^{18} y^{63} v_1^5-35844416926796872 x^{17} y^{64} v_1^5-9301686423521085 x^{16} y^{65} v_1^5-2231523666930240 x^{15} y^{66} v_1^5-492691323359520 x^{14} y^{67} v_1^5-99577481173520 x^{13} y^{68} v_1^5-18305928389840 x^{12} y^{69} v_1^5-3037555149720 x^{11} y^{70} v_1^5-450676266040 x^{10} y^{71} v_1^5-59090063890 x^9 y^{72} v_1^5-6745158090 x^8 y^{73} v_1^5-657431280 x^7 y^{74} v_1^5-53300016 x^6 y^{75} v_1^5-3465000 x^5 y^{76} v_1^5-171080 x^4 y^{77} v_1^5-5880 x^3 y^{78} v_1^5-120 x^2 y^{79} v_1^5-x y^{80} v_1^5\right) d^{81}+\left(x^{96} y v_1^6+168 x^{95} y^2 v_1^6+11200 x^{94} y^3 v_1^6+434280 x^{93} y^4 v_1^6+11542608 x^{92} y^5 v_1^6+230286672 x^{91} y^6 v_1^6+3651158016 x^{90} y^7 v_1^6+47820685770 x^{89} y^8 v_1^6+531983512060 x^{88} y^9 v_1^6+5132131172168 x^{87} y^{10} v_1^6+43628047147776 x^{86} y^{11} v_1^6+330973599615568 x^{85} y^{12} v_1^6+2263635632506080 x^{84} y^{13} v_1^6+14074505118396000 x^{83} y^{14} v_1^6+80110451988721440 x^{82} y^{15} v_1^6+419867752865718465 x^{81} y^{16} v_1^6+2036390768816396617 x^{80} y^{17} v_1^6+9178817841859742080 x^{79} y^{18} v_1^6+38591462233965026680 x^{78} y^{19} v_1^6+151834351669102704560 x^{77} y^{20} v_1^6+560591564444820734760 x^{76} y^{21} v_1^6+1947149821692415701792 x^{75} y^{22} v_1^6+6376526346185372754720 x^{74} y^{23} v_1^6+19726567323785947089540 x^{73} y^{24} v_1^6+57751267622051539740906 x^{72} y^{25} v_1^6+160249149117212007825280 x^{71} y^{26} v_1^6+422053198326757279100280 x^{70} y^{27} v_1^6+1056400916888279287112320 x^{69} y^{28} v_1^6+2515823241029292135662960 x^{68} y^{29} v_1^6+5706550323638909643674496 x^{67} y^{30} v_1^6+12340122171073836085513680 x^{66} y^{31} v_1^6+25461830924585967974884965 x^{65} y^{32} v_1^6+50167428665881780195413870 x^{64} y^{33} v_1^6+94454460239824179796203320 x^{63} y^{34} v_1^6+170047106083336898413032720 x^{62} y^{35} v_1^6+292896059631836666057064040 x^{61} y^{36} v_1^6+482927880063027471249703680 x^{60} y^{37} v_1^6+762570023970878339475073320 x^{59} y^{38} v_1^6+1153689250227823819303325520 x^{58} y^{39} v_1^6+1672909949614621642032740100 x^{57} y^{40} v_1^6+2325813341681055831765485760 x^{56} y^{41} v_1^6+3101141947465907134085398056 x^{55} y^{42} v_1^6+3966628821682093042521122000 x^{54} y^{43} v_1^6+4868179754738448042424039720 x^{53} y^{44} v_1^6+5733669595475103292604400160 x^{52} y^{45} v_1^6+6481566000685032815696643320 x^{51} y^{46} v_1^6+7033205932876654464440667216 x^{50} y^{47} v_1^6+7326264631942355547384013770 x^{49} y^{48} v_1^6+7326264631942355547384013770 x^{48} y^{49} v_1^6+7033205932876654464440667216 x^{47} y^{50} v_1^6+6481566000685032815696643320 x^{46} y^{51} v_1^6+5733669595475103292604400160 x^{45} y^{52} v_1^6+4868179754738448042424039720 x^{44} y^{53} v_1^6+3966628821682093042521122000 x^{43} y^{54} v_1^6+3101141947465907134085398056 x^{42} y^{55} v_1^6+2325813341681055831765485760 x^{41} y^{56} v_1^6+1672909949614621642032740100 x^{40} y^{57} v_1^6+1153689250227823819303325520 x^{39} y^{58} v_1^6+762570023970878339475073320 x^{38} y^{59} v_1^6+482927880063027471249703680 x^{37} y^{60} v_1^6+292896059631836666057064040 x^{36} y^{61} v_1^6+170047106083336898413032720 x^{35} y^{62} v_1^6+94454460239824179796203320 x^{34} y^{63} v_1^6+50167428665881780195413870 x^{33} y^{64} v_1^6+25461830924585967974884965 x^{32} y^{65} v_1^6+12340122171073836085513680 x^{31} y^{66} v_1^6+5706550323638909643674496 x^{30} y^{67} v_1^6+2515823241029292135662960 x^{29} y^{68} v_1^6+1056400916888279287112320 x^{28} y^{69} v_1^6+422053198326757279100280 x^{27} y^{70} v_1^6+160249149117212007825280 x^{26} y^{71} v_1^6+57751267622051539740906 x^{25} y^{72} v_1^6+19726567323785947089540 x^{24} y^{73} v_1^6+6376526346185372754720 x^{23} y^{74} v_1^6+1947149821692415701792 x^{22} y^{75} v_1^6+560591564444820734760 x^{21} y^{76} v_1^6+151834351669102704560 x^{20} y^{77} v_1^6+38591462233965026680 x^{19} y^{78} v_1^6+9178817841859742080 x^{18} y^{79} v_1^6+2036390768816396617 x^{17} y^{80} v_1^6+419867752865718465 x^{16} y^{81} v_1^6+80110451988721440 x^{15} y^{82} v_1^6+14074505118396000 x^{14} y^{83} v_1^6+2263635632506080 x^{13} y^{84} v_1^6+330973599615568 x^{12} y^{85} v_1^6+43628047147776 x^{11} y^{86} v_1^6+5132131172168 x^{10} y^{87} v_1^6+531983512060 x^9 y^{88} v_1^6+47820685770 x^8 y^{89} v_1^6+3651158016 x^7 y^{90} v_1^6+230286672 x^6 y^{91} v_1^6+11542608 x^5 y^{92} v_1^6+434280 x^4 y^{93} v_1^6+11200 x^3 y^{94} v_1^6+168 x^2 y^{95} v_1^6+x y^{96} v_1^6\right) d^{97}+O[d]^{98}$
$(x+y) d+\left(-x^{18} y v_1-9 x^{17} y^2 v_1-51 x^{16} y^3 v_1-204 x^{15} y^4 v_1-612 x^{14} y^5 v_1-1428 x^{13} y^6 v_1-2652 x^{12} y^7 v_1-3978 x^{11} y^8 v_1-4862 x^{10} y^9 v_1-4862 x^9 y^{10} v_1-3978 x^8 y^{11} v_1-2652 x^7 y^{12} v_1-1428 x^6 y^{13} v_1-612 x^5 y^{14} v_1-204 x^4 y^{15} v_1-51 x^3 y^{16} v_1-9 x^2 y^{17} v_1-x y^{18} v_1\right) d^{19}+\left(x^{36} y v_1^2+27 x^{35} y^2 v_1^2+366 x^{34} y^3 v_1^2+3315 x^{33} y^4 v_1^2+22491 x^{32} y^5 v_1^2+121380 x^{31} y^6 v_1^2+540192 x^{30} y^7 v_1^2+2029698 x^{29} y^8 v_1^2+6545000 x^{28} y^9 v_1^2+18330862 x^{27} y^{10} v_1^2+44997912 x^{26} y^{11} v_1^2+97498128 x^{25} y^{12} v_1^2+187497828 x^{24} y^{13} v_1^2+321425460 x^{23} y^{14} v_1^2+492852576 x^{22} y^{15} v_1^2+677672343 x^{21} y^{16} v_1^2+837124668 x^{20} y^{17} v_1^2+930138521 x^{19} y^{18} v_1^2+930138521 x^{18} y^{19} v_1^2+837124668 x^{17} y^{20} v_1^2+677672343 x^{16} y^{21} v_1^2+492852576 x^{15} y^{22} v_1^2+321425460 x^{14} y^{23} v_1^2+187497828 x^{13} y^{24} v_1^2+97498128 x^{12} y^{25} v_1^2+44997912 x^{11} y^{26} v_1^2+18330862 x^{10} y^{27} v_1^2+6545000 x^9 y^{28} v_1^2+2029698 x^8 y^{29} v_1^2+540192 x^7 y^{30} v_1^2+121380 x^6 y^{31} v_1^2+22491 x^5 y^{32} v_1^2+3315 x^4 y^{33} v_1^2+366 x^3 y^{34} v_1^2+27 x^2 y^{35} v_1^2+x y^{36} v_1^2\right) d^{37}+\left(-x^{54} y v_1^3-54 x^{53} y^2 v_1^3-1320 x^{52} y^3 v_1^3-20475 x^{51} y^4 v_1^3-231336 x^{50} y^5 v_1^3-2049180 x^{49} y^6 v_1^3-14884452 x^{48} y^7 v_1^3-91336410 x^{47} y^8 v_1^3-483524030 x^{46} y^9 v_1^3-2242541400 x^{45} y^{10} v_1^3-9219030912 x^{44} y^{11} v_1^3-33900611472 x^{43} y^{12} v_1^3-112320289620 x^{42} y^{13} v_1^3-337282294320 x^{41} y^{14} v_1^3-922397790384 x^{40} y^{15} v_1^3-2306672148303 x^{39} y^{16} v_1^3-5292614406069 x^{38} y^{17} v_1^3-11174227218000 x^{37} y^{18} v_1^3-21761267352521 x^{36} y^{19} v_1^3-39171118359204 x^{35} y^{20} v_1^3-65285874937638 x^{34} y^{21} v_1^3-100896845028360 x^{33} y^{22} v_1^3-144765359939655 x^{32} y^{23} v_1^3-193020667387380 x^{31} y^{24} v_1^3-239345724907968 x^{30} y^{25} v_1^3-276168188499192 x^{29} y^{26} v_1^3-296625107501800 x^{28} y^{27} v_1^3-296625107501800 x^{27} y^{28} v_1^3-276168188499192 x^{26} y^{29} v_1^3-239345724907968 x^{25} y^{30} v_1^3-193020667387380 x^{24} y^{31} v_1^3-144765359939655 x^{23} y^{32} v_1^3-100896845028360 x^{22} y^{33} v_1^3-65285874937638 x^{21} y^{34} v_1^3-39171118359204 x^{20} y^{35} v_1^3-21761267352521 x^{19} y^{36} v_1^3-11174227218000 x^{18} y^{37} v_1^3-5292614406069 x^{17} y^{38} v_1^3-2306672148303 x^{16} y^{39} v_1^3-922397790384 x^{15} y^{40} v_1^3-337282294320 x^{14} y^{41} v_1^3-112320289620 x^{13} y^{42} v_1^3-33900611472 x^{12} y^{43} v_1^3-9219030912 x^{11} y^{44} v_1^3-2242541400 x^{10} y^{45} v_1^3-483524030 x^9 y^{46} v_1^3-91336410 x^8 y^{47} v_1^3-14884452 x^7 y^{48} v_1^3-2049180 x^6 y^{49} v_1^3-231336 x^5 y^{50} v_1^3-20475 x^4 y^{51} v_1^3-1320 x^3 y^{52} v_1^3-54 x^2 y^{53} v_1^3-x y^{54} v_1^3\right) d^{55}+\left(x^{72} y v_1^4+90 x^{71} y^2 v_1^4+3450 x^{70} y^3 v_1^4+80850 x^{69} y^4 v_1^4+1347066 x^{68} y^5 v_1^4+17315928 x^{67} y^6 v_1^4+180622620 x^{66} y^7 v_1^4+1581473025 x^{65} y^8 v_1^4+11905273655 x^{64} y^9 v_1^4+78436292792 x^{63} y^{10} v_1^4+458445071448 x^{62} y^{11} v_1^4+2402533480620 x^{61} y^{12} v_1^4+11385746621760 x^{60} y^{13} v_1^4+49133339244720 x^{59} y^{14} v_1^4+194180198819616 x^{58} y^{15} v_1^4+706209892869411 x^{57} y^{16} v_1^4+2373172843438800 x^{56} y^{17} v_1^4+7394378629027600 x^{55} y^{18} v_1^4+21426541509274521 x^{54} y^{19} v_1^4+57890833193400408 x^{53} y^{20} v_1^4+146170722029709960 x^{52} y^{21} v_1^4+345595330733430600 x^{51} y^{22} v_1^4+766464846551414280 x^{50} y^{23} v_1^4+1596994784315685180 x^{49} y^{24} v_1^4+3130349122979634528 x^{48} y^{25} v_1^4+5779382241354191640 x^{47} y^{26} v_1^4+10060702748787286830 x^{46} y^{27} v_1^4+16528593997320826400 x^{45} y^{28} v_1^4+25648094436413424192 x^{44} y^{29} v_1^4+37617444505610018112 x^{43} y^{30} v_1^4+52179228900780435300 x^{42} y^{31} v_1^4+68485382550213880860 x^{41} y^{32} v_1^4+85088000009881241940 x^{40} y^{33} v_1^4+100103593624090762998 x^{39} y^{34} v_1^4+111544040924813387007 x^{38} y^{35} v_1^4+117740948261921832400 x^{37} y^{36} v_1^4+117740948261921832400 x^{36} y^{37} v_1^4+111544040924813387007 x^{35} y^{38} v_1^4+100103593624090762998 x^{34} y^{39} v_1^4+85088000009881241940 x^{33} y^{40} v_1^4+68485382550213880860 x^{32} y^{41} v_1^4+52179228900780435300 x^{31} y^{42} v_1^4+37617444505610018112 x^{30} y^{43} v_1^4+25648094436413424192 x^{29} y^{44} v_1^4+16528593997320826400 x^{28} y^{45} v_1^4+10060702748787286830 x^{27} y^{46} v_1^4+5779382241354191640 x^{26} y^{47} v_1^4+3130349122979634528 x^{25} y^{48} v_1^4+1596994784315685180 x^{24} y^{49} v_1^4+766464846551414280 x^{23} y^{50} v_1^4+345595330733430600 x^{22} y^{51} v_1^4+146170722029709960 x^{21} y^{52} v_1^4+57890833193400408 x^{20} y^{53} v_1^4+21426541509274521 x^{19} y^{54} v_1^4+7394378629027600 x^{18} y^{55} v_1^4+2373172843438800 x^{17} y^{56} v_1^4+706209892869411 x^{16} y^{57} v_1^4+194180198819616 x^{15} y^{58} v_1^4+49133339244720 x^{14} y^{59} v_1^4+11385746621760 x^{13} y^{60} v_1^4+2402533480620 x^{12} y^{61} v_1^4+458445071448 x^{11} y^{62} v_1^4+78436292792 x^{10} y^{63} v_1^4+11905273655 x^9 y^{64} v_1^4+1581473025 x^8 y^{65} v_1^4+180622620 x^7 y^{66} v_1^4+17315928 x^6 y^{67} v_1^4+1347066 x^5 y^{68} v_1^4+80850 x^4 y^{69} v_1^4+3450 x^3 y^{70} v_1^4+90 x^2 y^{71} v_1^4+x y^{72} v_1^4\right) d^{73}+\left(-x^{90} y v_1^5-135 x^{89} y^2 v_1^5-7455 x^{88} y^3 v_1^5-244860 x^{87} y^4 v_1^5-5607630 x^{86} y^5 v_1^5-97691958 x^{85} y^6 v_1^5-1366882110 x^{84} y^7 v_1^5-15933735180 x^{83} y^8 v_1^5-158849720315 x^{82} y^9 v_1^5-1381003999375 x^{81} y^{10} v_1^5-10627656339573 x^{80} y^{11} v_1^5-73253575744440 x^{79} y^{12} v_1^5-456542091530280 x^{78} y^{13} v_1^5-2592724992056280 x^{77} y^{14} v_1^5-13503501824708520 x^{76} y^{15} v_1^5-64847843560234881 x^{75} y^{16} v_1^5-288466600315063275 x^{74} y^{17} v_1^5-1193312624368732175 x^{73} y^{18} v_1^5-4606259256189140246 x^{72} y^{19} v_1^5-16640424155474305290 x^{71} y^{20} v_1^5-56406652390538075160 x^{70} y^{21} v_1^5-179821307482445476950 x^{69} y^{22} v_1^5-540230387293887602580 x^{68} y^{23} v_1^5-1532249758783660075803 x^{67} y^{24} v_1^5-4109559702663142230993 x^{66} y^{25} v_1^5-10437738627462718274433 x^{65} y^{26} v_1^5-25137949991081153660590 x^{64} y^{27} v_1^5-57474700002155602853680 x^{63} y^{28} v_1^5-124884479133431637332328 x^{62} y^{29} v_1^5-258132207652650207357264 x^{61} y^{30} v_1^5-507989749121323622579664 x^{60} y^{31} v_1^5-952549264963683731301930 x^{59} y^{32} v_1^5-1703127713150266642798770 x^{58} y^{33} v_1^5-2905435613930477436374496 x^{57} y^{34} v_1^5-4731820971291874812809574 x^{56} y^{35} v_1^5-7360728137044020540853604 x^{55} y^{36} v_1^5-10941740636373405304276460 x^{54} y^{37} v_1^5-15548900838965415469442394 x^{53} y^{38} v_1^5-21130657575310364106922620 x^{52} y^{39} v_1^5-27469939745881544581618398 x^{51} y^{40} v_1^5-34169993105250767439675438 x^{50} y^{41} v_1^5-40678614487307378028365250 x^{49} y^{42} v_1^5-46354736027335600770979122 x^{48} y^{43} v_1^5-50568825172079684913072840 x^{47} y^{44} v_1^5-52816339005411327260102320 x^{46} y^{45} v_1^5-52816339005411327260102320 x^{45} y^{46} v_1^5-50568825172079684913072840 x^{44} y^{47} v_1^5-46354736027335600770979122 x^{43} y^{48} v_1^5-40678614487307378028365250 x^{42} y^{49} v_1^5-34169993105250767439675438 x^{41} y^{50} v_1^5-27469939745881544581618398 x^{40} y^{51} v_1^5-21130657575310364106922620 x^{39} y^{52} v_1^5-15548900838965415469442394 x^{38} y^{53} v_1^5-10941740636373405304276460 x^{37} y^{54} v_1^5-7360728137044020540853604 x^{36} y^{55} v_1^5-4731820971291874812809574 x^{35} y^{56} v_1^5-2905435613930477436374496 x^{34} y^{57} v_1^5-1703127713150266642798770 x^{33} y^{58} v_1^5-952549264963683731301930 x^{32} y^{59} v_1^5-507989749121323622579664 x^{31} y^{60} v_1^5-258132207652650207357264 x^{30} y^{61} v_1^5-124884479133431637332328 x^{29} y^{62} v_1^5-57474700002155602853680 x^{28} y^{63} v_1^5-25137949991081153660590 x^{27} y^{64} v_1^5-10437738627462718274433 x^{26} y^{65} v_1^5-4109559702663142230993 x^{25} y^{66} v_1^5-1532249758783660075803 x^{24} y^{67} v_1^5-540230387293887602580 x^{23} y^{68} v_1^5-179821307482445476950 x^{22} y^{69} v_1^5-56406652390538075160 x^{21} y^{70} v_1^5-16640424155474305290 x^{20} y^{71} v_1^5-4606259256189140246 x^{19} y^{72} v_1^5-1193312624368732175 x^{18} y^{73} v_1^5-288466600315063275 x^{17} y^{74} v_1^5-64847843560234881 x^{16} y^{75} v_1^5-13503501824708520 x^{15} y^{76} v_1^5-2592724992056280 x^{14} y^{77} v_1^5-456542091530280 x^{13} y^{78} v_1^5-73253575744440 x^{12} y^{79} v_1^5-10627656339573 x^{11} y^{80} v_1^5-1381003999375 x^{10} y^{81} v_1^5-158849720315 x^9 y^{82} v_1^5-15933735180 x^8 y^{83} v_1^5-1366882110 x^7 y^{84} v_1^5-97691958 x^6 y^{85} v_1^5-5607630 x^5 y^{86} v_1^5-244860 x^4 y^{87} v_1^5-7455 x^3 y^{88} v_1^5-135 x^2 y^{89} v_1^5-x y^{90} v_1^5\right) d^{91}+O[d]^{92}$
$(x+y) d+\left(-x^{22} y v_1-11 x^{21} y^2 v_1-77 x^{20} y^3 v_1-385 x^{19} y^4 v_1-1463 x^{18} y^5 v_1-4389 x^{17} y^6 v_1-10659 x^{16} y^7 v_1-21318 x^{15} y^8 v_1-35530 x^{14} y^9 v_1-49742 x^{13} y^{10} v_1-58786 x^{12} y^{11} v_1-58786 x^{11} y^{12} v_1-49742 x^{10} y^{13} v_1-35530 x^9 y^{14} v_1-21318 x^8 y^{15} v_1-10659 x^7 y^{16} v_1-4389 x^6 y^{17} v_1-1463 x^5 y^{18} v_1-385 x^4 y^{19} v_1-77 x^3 y^{20} v_1-11 x^2 y^{21} v_1-x y^{22} v_1\right) d^{23}+\left(x^{44} y v_1^2+33 x^{43} y^2 v_1^2+550 x^{42} y^3 v_1^2+6160 x^{41} y^4 v_1^2+51975 x^{40} y^5 v_1^2+350889 x^{39} y^6 v_1^2+1965612 x^{38} y^7 v_1^2+9357975 x^{37} y^8 v_1^2+38507205 x^{36} y^9 v_1^2+138675680 x^{35} y^{10} v_1^2+441299586 x^{34} y^{11} v_1^2+1250407613 x^{33} y^{12} v_1^2+3174161375 x^{32} y^{13} v_1^2+7255261530 x^{31} y^{14} v_1^2+14994228480 x^{30} y^{15} v_1^2+28114189059 x^{29} y^{16} v_1^2+47959503372 x^{28} y^{17} v_1^2+74603673375 x^{27} y^{18} v_1^2+106015746760 x^{26} y^{19} v_1^2+137820470865 x^{25} y^{20} v_1^2+164071989136 x^{24} y^{21} v_1^2+178987624513 x^{23} y^{22} v_1^2+178987624513 x^{22} y^{23} v_1^2+164071989136 x^{21} y^{24} v_1^2+137820470865 x^{20} y^{25} v_1^2+106015746760 x^{19} y^{26} v_1^2+74603673375 x^{18} y^{27} v_1^2+47959503372 x^{17} y^{28} v_1^2+28114189059 x^{16} y^{29} v_1^2+14994228480 x^{15} y^{30} v_1^2+7255261530 x^{14} y^{31} v_1^2+3174161375 x^{13} y^{32} v_1^2+1250407613 x^{12} y^{33} v_1^2+441299586 x^{11} y^{34} v_1^2+138675680 x^{10} y^{35} v_1^2+38507205 x^9 y^{36} v_1^2+9357975 x^8 y^{37} v_1^2+1965612 x^7 y^{38} v_1^2+350889 x^6 y^{39} v_1^2+51975 x^5 y^{40} v_1^2+6160 x^4 y^{41} v_1^2+550 x^3 y^{42} v_1^2+33 x^2 y^{43} v_1^2+x y^{44} v_1^2\right) d^{45}+\left(-x^{66} y v_1^3-66 x^{65} y^2 v_1^3-1980 x^{64} y^3 v_1^3-37840 x^{63} y^4 v_1^3-528759 x^{62} y^5 v_1^3-5814732 x^{61} y^6 v_1^3-52636848 x^{60} y^7 v_1^3-404134335 x^{59} y^8 v_1^3-2687832290 x^{58} y^9 v_1^3-15728102962 x^{57} y^{10} v_1^3-81941469480 x^{56} y^{11} v_1^3-383643931853 x^{55} y^{12} v_1^3-1626283103830 x^{54} y^{13} v_1^3-6280061519160 x^{53} y^{14} v_1^3-22204544929512 x^{52} y^{15} v_1^3-72192885209973 x^{51} y^{16} v_1^3-216626615133291 x^{50} y^{17} v_1^3-601815201265850 x^{49} y^{18} v_1^3-1552155745327110 x^{48} y^{19} v_1^3-3725311609255929 x^{47} y^{20} v_1^3-8337766245085739 x^{46} y^{21} v_1^3-17433690227349240 x^{45} y^{22} v_1^3-34109572910699113 x^{44} y^{23} v_1^3-62534381074937508 x^{43} y^{24} v_1^3-107559273269363322 x^{42} y^{25} v_1^3-173749701297025084 x^{41} y^{26} v_1^3-263842213610257667 x^{40} y^{27} v_1^3-376917495974082932 x^{39} y^{28} v_1^3-506889074423690772 x^{38} y^{29} v_1^3-642059509261747016 x^{37} y^{30} v_1^3-766329098943596837 x^{36} y^{31} v_1^3-862120239442387211 x^{35} y^{32} v_1^3-914369952027071358 x^{34} y^{33} v_1^3-914369952027071358 x^{33} y^{34} v_1^3-862120239442387211 x^{32} y^{35} v_1^3-766329098943596837 x^{31} y^{36} v_1^3-642059509261747016 x^{30} y^{37} v_1^3-506889074423690772 x^{29} y^{38} v_1^3-376917495974082932 x^{28} y^{39} v_1^3-263842213610257667 x^{27} y^{40} v_1^3-173749701297025084 x^{26} y^{41} v_1^3-107559273269363322 x^{25} y^{42} v_1^3-62534381074937508 x^{24} y^{43} v_1^3-34109572910699113 x^{23} y^{44} v_1^3-17433690227349240 x^{22} y^{45} v_1^3-8337766245085739 x^{21} y^{46} v_1^3-3725311609255929 x^{20} y^{47} v_1^3-1552155745327110 x^{19} y^{48} v_1^3-601815201265850 x^{18} y^{49} v_1^3-216626615133291 x^{17} y^{50} v_1^3-72192885209973 x^{16} y^{51} v_1^3-22204544929512 x^{15} y^{52} v_1^3-6280061519160 x^{14} y^{53} v_1^3-1626283103830 x^{13} y^{54} v_1^3-383643931853 x^{12} y^{55} v_1^3-81941469480 x^{11} y^{56} v_1^3-15728102962 x^{10} y^{57} v_1^3-2687832290 x^9 y^{58} v_1^3-404134335 x^8 y^{59} v_1^3-52636848 x^7 y^{60} v_1^3-5814732 x^6 y^{61} v_1^3-528759 x^5 y^{62} v_1^3-37840 x^4 y^{63} v_1^3-1980 x^3 y^{64} v_1^3-66 x^2 y^{65} v_1^3-x y^{66} v_1^3\right) d^{67}+\left(x^{88} y v_1^4+110 x^{87} y^2 v_1^4+5170 x^{86} y^3 v_1^4+148995 x^{85} y^4 v_1^4+3061674 x^{84} y^5 v_1^4+48678168 x^{83} y^6 v_1^4+629820840 x^{82} y^7 v_1^4+6859797945 x^{81} y^8 v_1^4+64426013795 x^{80} y^9 v_1^4+531136213322 x^{79} y^{10} v_1^4+3896465183338 x^{78} y^{11} v_1^4+25710667623550 x^{77} y^{12} v_1^4+153912545181780 x^{76} y^{13} v_1^4+841805306791680 x^{75} y^{14} v_1^4+4231231078887912 x^{74} y^{15} v_1^4+19641636625066566 x^{73} y^{16} v_1^4+84560125063948545 x^{72} y^{17} v_1^4+338842315457060030 x^{71} y^{18} v_1^4+1267752387190130380 x^{70} y^{19} v_1^4+4440858666774712259 x^{69} y^{20} v_1^4+14599730528504854590 x^{68} y^{21} v_1^4+45143873505605990700 x^{67} y^{22} v_1^4+131540175871849889413 x^{66} y^{23} v_1^4+361798018028662133391 x^{65} y^{24} v_1^4+940782406147790909967 x^{64} y^{25} v_1^4+2315945826372782337052 x^{63} y^{26} v_1^4+5404137437083435622495 x^{62} y^{27} v_1^4+11966681242466437504776 x^{61} y^{28} v_1^4+25171801916331400693968 x^{60} y^{29} v_1^4+50344245892171957861256 x^{59} y^{30} v_1^4+95817234317425449077106 x^{58} y^{31} v_1^4+173669599320568197143440 x^{57} y^{32} v_1^4+299975676832724473595820 x^{56} y^{33} v_1^4+494078499741363256455918 x^{55} y^{34} v_1^4+776409933141778833496456 x^{54} y^{35} v_1^4+1164615666039327769185776 x^{53} y^{36} v_1^4+1668233893404145167323520 x^{52} y^{37} v_1^4+2282846887306466854335204 x^{51} y^{38} v_1^4+2985261690993085010631311 x^{50} y^{39} v_1^4+3731577377312786604630192 x^{49} y^{40} v_1^4+4459690209331106144948322 x^{48} y^{41} v_1^4+5096788916449502297501850 x^{47} y^{42} v_1^4+5570908874116636013252817 x^{46} y^{43} v_1^4+5824132030151118577419240 x^{45} y^{44} v_1^4+5824132030151118577419240 x^{44} y^{45} v_1^4+5570908874116636013252817 x^{43} y^{46} v_1^4+5096788916449502297501850 x^{42} y^{47} v_1^4+4459690209331106144948322 x^{41} y^{48} v_1^4+3731577377312786604630192 x^{40} y^{49} v_1^4+2985261690993085010631311 x^{39} y^{50} v_1^4+2282846887306466854335204 x^{38} y^{51} v_1^4+1668233893404145167323520 x^{37} y^{52} v_1^4+1164615666039327769185776 x^{36} y^{53} v_1^4+776409933141778833496456 x^{35} y^{54} v_1^4+494078499741363256455918 x^{34} y^{55} v_1^4+299975676832724473595820 x^{33} y^{56} v_1^4+173669599320568197143440 x^{32} y^{57} v_1^4+95817234317425449077106 x^{31} y^{58} v_1^4+50344245892171957861256 x^{30} y^{59} v_1^4+25171801916331400693968 x^{29} y^{60} v_1^4+11966681242466437504776 x^{28} y^{61} v_1^4+5404137437083435622495 x^{27} y^{62} v_1^4+2315945826372782337052 x^{26} y^{63} v_1^4+940782406147790909967 x^{25} y^{64} v_1^4+361798018028662133391 x^{24} y^{65} v_1^4+131540175871849889413 x^{23} y^{66} v_1^4+45143873505605990700 x^{22} y^{67} v_1^4+14599730528504854590 x^{21} y^{68} v_1^4+4440858666774712259 x^{20} y^{69} v_1^4+1267752387190130380 x^{19} y^{70} v_1^4+338842315457060030 x^{18} y^{71} v_1^4+84560125063948545 x^{17} y^{72} v_1^4+19641636625066566 x^{16} y^{73} v_1^4+4231231078887912 x^{15} y^{74} v_1^4+841805306791680 x^{14} y^{75} v_1^4+153912545181780 x^{13} y^{76} v_1^4+25710667623550 x^{12} y^{77} v_1^4+3896465183338 x^{11} y^{78} v_1^4+531136213322 x^{10} y^{79} v_1^4+64426013795 x^9 y^{80} v_1^4+6859797945 x^8 y^{81} v_1^4+629820840 x^7 y^{82} v_1^4+48678168 x^6 y^{83} v_1^4+3061674 x^5 y^{84} v_1^4+148995 x^4 y^{85} v_1^4+5170 x^3 y^{86} v_1^4+110 x^2 y^{87} v_1^4+x y^{88} v_1^4\right) d^{89}+\left(-x^{110} y v_1^5-165 x^{109} y^2 v_1^5-11165 x^{108} y^3 v_1^5-450450 x^{107} y^4 v_1^5-12701304 x^{106} y^5 v_1^5-273067872 x^{105} y^6 v_1^5-4725838920 x^{104} y^7 v_1^5-68295703905 x^{103} y^8 v_1^5-846032402930 x^{102} y^9 v_1^5-9160666723208 x^{101} y^{10} v_1^5-88008041460066 x^{100} y^{11} v_1^5-759111013124100 x^{99} y^{12} v_1^5-5934834875896080 x^{98} y^{13} v_1^5-42385649438064240 x^{97} y^{14} v_1^5-278325097445036664 x^{96} y^{15} v_1^5-1689592221295286550 x^{95} y^{16} v_1^5-9526399008772902795 x^{94} y^{17} v_1^5-50087814916826663515 x^{93} y^{18} v_1^5-246434425401131167585 x^{92} y^{19} v_1^5-1138039215511978083150 x^{91} y^{20} v_1^5-4946102997747076548240 x^{90} y^{21} v_1^5-20279201591561828233500 x^{89} y^{22} v_1^5-78603233291045880879913 x^{88} y^{23} v_1^5-288573653418530225359735 x^{87} y^{24} v_1^5-1005177096302632975161462 x^{86} y^{25} v_1^5-3327132495135081854007864 x^{85} y^{26} v_1^5-10479710140640118901474490 x^{84} y^{27} v_1^5-31451097103162823132743224 x^{83} y^{28} v_1^5-90040380752347859537845680 x^{82} y^{29} v_1^5-246160718302309652973129152 x^{81} y^{30} v_1^5-643289952153255533035523163 x^{80} y^{31} v_1^5-1608398549982459239720916860 x^{79} y^{32} v_1^5-3850708625634839935933946714 x^{78} y^{33} v_1^5-8834472690250247571449501310 x^{77} y^{34} v_1^5-19436616328483629872553627528 x^{76} y^{35} v_1^5-41034021309131155243342571244 x^{75} y^{36} v_1^5-83178738455103498951996606420 x^{74} y^{37} v_1^5-161981931417343775186536208088 x^{73} y^{38} v_1^5-303199933812066935370741742365 x^{72} y^{39} v_1^5-545763612438945588228824659068 x^{71} y^{40} v_1^5-945107300742430769151244936900 x^{70} y^{41} v_1^5-1575183931357521477442388846050 x^{69} y^{42} v_1^5-2527626297963817435136417327970 x^{68} y^{43} v_1^5-3906337375508093876421714878100 x^{67} y^{44} v_1^5-5816108138710200155460339540480 x^{66} y^{45} v_1^5-8344856378434777565610802752174 x^{65} y^{46} v_1^5-11540763917528143483392491974635 x^{64} y^{47} v_1^5-15387689681806690767432413034546 x^{63} y^{48} v_1^5-19784176176636906522720415526970 x^{62} y^{49} v_1^5-24532381437590324659274865712860 x^{61} y^{50} v_1^5-29342654576239872569708307682128 x^{60} y^{51} v_1^5-33856910765620128773426213848320 x^{59} y^{52} v_1^5-37689769696715233775063639058168 x^{58} y^{53} v_1^5-40481605162559636262945778290930 x^{57} y^{54} v_1^5-41953663846200901663463658736044 x^{56} y^{55} v_1^5-41953663846200901663463658736044 x^{55} y^{56} v_1^5-40481605162559636262945778290930 x^{54} y^{57} v_1^5-37689769696715233775063639058168 x^{53} y^{58} v_1^5-33856910765620128773426213848320 x^{52} y^{59} v_1^5-29342654576239872569708307682128 x^{51} y^{60} v_1^5-24532381437590324659274865712860 x^{50} y^{61} v_1^5-19784176176636906522720415526970 x^{49} y^{62} v_1^5-15387689681806690767432413034546 x^{48} y^{63} v_1^5-11540763917528143483392491974635 x^{47} y^{64} v_1^5-8344856378434777565610802752174 x^{46} y^{65} v_1^5-5816108138710200155460339540480 x^{45} y^{66} v_1^5-3906337375508093876421714878100 x^{44} y^{67} v_1^5-2527626297963817435136417327970 x^{43} y^{68} v_1^5-1575183931357521477442388846050 x^{42} y^{69} v_1^5-945107300742430769151244936900 x^{41} y^{70} v_1^5-545763612438945588228824659068 x^{40} y^{71} v_1^5-303199933812066935370741742365 x^{39} y^{72} v_1^5-161981931417343775186536208088 x^{38} y^{73} v_1^5-83178738455103498951996606420 x^{37} y^{74} v_1^5-41034021309131155243342571244 x^{36} y^{75} v_1^5-19436616328483629872553627528 x^{35} y^{76} v_1^5-8834472690250247571449501310 x^{34} y^{77} v_1^5-3850708625634839935933946714 x^{33} y^{78} v_1^5-1608398549982459239720916860 x^{32} y^{79} v_1^5-643289952153255533035523163 x^{31} y^{80} v_1^5-246160718302309652973129152 x^{30} y^{81} v_1^5-90040380752347859537845680 x^{29} y^{82} v_1^5-31451097103162823132743224 x^{28} y^{83} v_1^5-10479710140640118901474490 x^{27} y^{84} v_1^5-3327132495135081854007864 x^{26} y^{85} v_1^5-1005177096302632975161462 x^{25} y^{86} v_1^5-288573653418530225359735 x^{24} y^{87} v_1^5-78603233291045880879913 x^{23} y^{88} v_1^5-20279201591561828233500 x^{22} y^{89} v_1^5-4946102997747076548240 x^{21} y^{90} v_1^5-1138039215511978083150 x^{20} y^{91} v_1^5-246434425401131167585 x^{19} y^{92} v_1^5-50087814916826663515 x^{18} y^{93} v_1^5-9526399008772902795 x^{17} y^{94} v_1^5-1689592221295286550 x^{16} y^{95} v_1^5-278325097445036664 x^{15} y^{96} v_1^5-42385649438064240 x^{14} y^{97} v_1^5-5934834875896080 x^{13} y^{98} v_1^5-759111013124100 x^{12} y^{99} v_1^5-88008041460066 x^{11} y^{100} v_1^5-9160666723208 x^{10} y^{101} v_1^5-846032402930 x^9 y^{102} v_1^5-68295703905 x^8 y^{103} v_1^5-4725838920 x^7 y^{104} v_1^5-273067872 x^6 y^{105} v_1^5-12701304 x^5 y^{106} v_1^5-450450 x^4 y^{107} v_1^5-11165 x^3 y^{108} v_1^5-165 x^2 y^{109} v_1^5-x y^{110} v_1^5\right) d^{111}+O[d]^{112}$
$(x+y) d+\left(-x^{28} y v_1-14 x^{27} y^2 v_1-126 x^{26} y^3 v_1-819 x^{25} y^4 v_1-4095 x^{24} y^5 v_1-16380 x^{23} y^6 v_1-53820 x^{22} y^7 v_1-148005 x^{21} y^8 v_1-345345 x^{20} y^9 v_1-690690 x^{19} y^{10} v_1-1193010 x^{18} y^{11} v_1-1789515 x^{17} y^{12} v_1-2340135 x^{16} y^{13} v_1-2674440 x^{15} y^{14} v_1-2674440 x^{14} y^{15} v_1-2340135 x^{13} y^{16} v_1-1789515 x^{12} y^{17} v_1-1193010 x^{11} y^{18} v_1-690690 x^{10} y^{19} v_1-345345 x^9 y^{20} v_1-148005 x^8 y^{21} v_1-53820 x^7 y^{22} v_1-16380 x^6 y^{23} v_1-4095 x^5 y^{24} v_1-819 x^4 y^{25} v_1-126 x^3 y^{26} v_1-14 x^2 y^{27} v_1-x y^{28} v_1\right) d^{29}+\left(x^{56} y v_1^2+42 x^{55} y^2 v_1^2+896 x^{54} y^3 v_1^2+12915 x^{53} y^4 v_1^2+140994 x^{52} y^5 v_1^2+1238328 x^{51} y^6 v_1^2+9075924 x^{50} y^7 v_1^2+56872530 x^{49} y^8 v_1^2+309984675 x^{48} y^9 v_1^2+1488617130 x^{47} y^{10} v_1^2+6361648020 x^{46} y^{11} v_1^2+24388106925 x^{45} y^{12} v_1^2+84422710260 x^{44} y^{13} v_1^2+265331192400 x^{43} y^{14} v_1^2+760618759320 x^{42} y^{15} v_1^2+1996626583350 x^{41} y^{16} v_1^2+4815395314065 x^{40} y^{17} v_1^2+10700879668710 x^{39} y^{18} v_1^2+21964964221200 x^{38} y^{19} v_1^2+41733432365625 x^{37} y^{20} v_1^2+73530333363630 x^{36} y^{21} v_1^2+120322363739760 x^{35} y^{22} v_1^2+183099249185580 x^{34} y^{23} v_1^2+259390603017000 x^{33} y^{24} v_1^2+342395595983259 x^{32} y^{25} v_1^2+421409964287214 x^{31} y^{26} v_1^2+483841070107556 x^{30} y^{27} v_1^2+518401146543811 x^{29} y^{28} v_1^2+518401146543811 x^{28} y^{29} v_1^2+483841070107556 x^{27} y^{30} v_1^2+421409964287214 x^{26} y^{31} v_1^2+342395595983259 x^{25} y^{32} v_1^2+259390603017000 x^{24} y^{33} v_1^2+183099249185580 x^{23} y^{34} v_1^2+120322363739760 x^{22} y^{35} v_1^2+73530333363630 x^{21} y^{36} v_1^2+41733432365625 x^{20} y^{37} v_1^2+21964964221200 x^{19} y^{38} v_1^2+10700879668710 x^{18} y^{39} v_1^2+4815395314065 x^{17} y^{40} v_1^2+1996626583350 x^{16} y^{41} v_1^2+760618759320 x^{15} y^{42} v_1^2+265331192400 x^{14} y^{43} v_1^2+84422710260 x^{13} y^{44} v_1^2+24388106925 x^{12} y^{45} v_1^2+6361648020 x^{11} y^{46} v_1^2+1488617130 x^{10} y^{47} v_1^2+309984675 x^9 y^{48} v_1^2+56872530 x^8 y^{49} v_1^2+9075924 x^7 y^{50} v_1^2+1238328 x^6 y^{51} v_1^2+140994 x^5 y^{52} v_1^2+12915 x^4 y^{53} v_1^2+896 x^3 y^{54} v_1^2+42 x^2 y^{55} v_1^2+x y^{56} v_1^2\right) d^{57}+\left(-x^{84} y v_1^3-84 x^{83} y^2 v_1^3-3220 x^{82} y^3 v_1^3-78925 x^{81} y^4 v_1^3-1419579 x^{80} y^5 v_1^3-20166048 x^{79} y^6 v_1^3-236664180 x^{78} y^7 v_1^3-2364348285 x^{77} y^8 v_1^3-20538297780 x^{76} y^9 v_1^3-157579680258 x^{75} y^{10} v_1^3-1080768558870 x^{74} y^{11} v_1^3-6689127553290 x^{73} y^{12} v_1^3-37646446663350 x^{72} y^{13} v_1^3-193875628318200 x^{71} y^{14} v_1^3-918438592798800 x^{70} y^{15} v_1^3-4020165470078100 x^{69} y^{16} v_1^3-16321957597395765 x^{68} y^{17} v_1^3-61671429580941600 x^{67} y^{18} v_1^3-217494900854910000 x^{66} y^{19} v_1^3-717774906253568625 x^{65} y^{20} v_1^3-2221757763975361755 x^{64} y^{21} v_1^3-6463415635746610320 x^{63} y^{22} v_1^3-17704321579772509500 x^{62} y^{23} v_1^3-45736423471681999875 x^{61} y^{24} v_1^3-111597215666500062954 x^{60} y^{25} v_1^3-257532457563425970954 x^{59} y^{26} v_1^3-562756594813000932974 x^{58} y^{27} v_1^3-1165710607656648476400 x^{57} y^{28} v_1^3-2291224816209041825011 x^{56} y^{29} v_1^3-4276953474097948180908 x^{55} y^{30} v_1^3-7588143681906323962944 x^{54} y^{31} v_1^3-12804992805612517669215 x^{53} y^{32} v_1^3-20565594765374343495300 x^{52} y^{33} v_1^3-31453262765436480198048 x^{51} y^{34} v_1^3-45831897292815518795352 x^{50} y^{35} v_1^3-63655412980218541307280 x^{49} y^{36} v_1^3-84300411826347100941375 x^{48} y^{37} v_1^3-106484730749981963324400 x^{47} y^{38} v_1^3-128327752452985041495420 x^{46} y^{39} v_1^3-147576915325740877138575 x^{45} y^{40} v_1^3-161974663164368382837600 x^{44} y^{41} v_1^3-169687742363343815083200 x^{43} y^{42} v_1^3-169687742363343815083200 x^{42} y^{43} v_1^3-161974663164368382837600 x^{41} y^{44} v_1^3-147576915325740877138575 x^{40} y^{45} v_1^3-128327752452985041495420 x^{39} y^{46} v_1^3-106484730749981963324400 x^{38} y^{47} v_1^3-84300411826347100941375 x^{37} y^{48} v_1^3-63655412980218541307280 x^{36} y^{49} v_1^3-45831897292815518795352 x^{35} y^{50} v_1^3-31453262765436480198048 x^{34} y^{51} v_1^3-20565594765374343495300 x^{33} y^{52} v_1^3-12804992805612517669215 x^{32} y^{53} v_1^3-7588143681906323962944 x^{31} y^{54} v_1^3-4276953474097948180908 x^{30} y^{55} v_1^3-2291224816209041825011 x^{29} y^{56} v_1^3-1165710607656648476400 x^{28} y^{57} v_1^3-562756594813000932974 x^{27} y^{58} v_1^3-257532457563425970954 x^{26} y^{59} v_1^3-111597215666500062954 x^{25} y^{60} v_1^3-45736423471681999875 x^{24} y^{61} v_1^3-17704321579772509500 x^{23} y^{62} v_1^3-6463415635746610320 x^{22} y^{63} v_1^3-2221757763975361755 x^{21} y^{64} v_1^3-717774906253568625 x^{20} y^{65} v_1^3-217494900854910000 x^{19} y^{66} v_1^3-61671429580941600 x^{18} y^{67} v_1^3-16321957597395765 x^{17} y^{68} v_1^3-4020165470078100 x^{16} y^{69} v_1^3-918438592798800 x^{15} y^{70} v_1^3-193875628318200 x^{14} y^{71} v_1^3-37646446663350 x^{13} y^{72} v_1^3-6689127553290 x^{12} y^{73} v_1^3-1080768558870 x^{11} y^{74} v_1^3-157579680258 x^{10} y^{75} v_1^3-20538297780 x^9 y^{76} v_1^3-2364348285 x^8 y^{77} v_1^3-236664180 x^7 y^{78} v_1^3-20166048 x^6 y^{79} v_1^3-1419579 x^5 y^{80} v_1^3-78925 x^4 y^{81} v_1^3-3220 x^3 y^{82} v_1^3-84 x^2 y^{83} v_1^3-x y^{84} v_1^3\right) d^{85}+\left(x^{112} y v_1^4+140 x^{111} y^2 v_1^4+8400 x^{110} y^3 v_1^4+309925 x^{109} y^4 v_1^4+8175944 x^{108} y^5 v_1^4+167333040 x^{107} y^6 v_1^4+2794469220 x^{106} y^7 v_1^4+39391065450 x^{105} y^8 v_1^4+480100728030 x^{104} y^9 v_1^4+5150627251770 x^{103} y^{10} v_1^4+49309369189080 x^{102} y^{11} v_1^4+425818765660470 x^{101} y^{12} v_1^4+3345930702948540 x^{100} y^{13} v_1^4+24093380649379200 x^{99} y^{14} v_1^4+159934750878701520 x^{98} y^{15} v_1^4+983620514602124910 x^{97} y^{16} v_1^4+5628744893856579075 x^{96} y^{17} v_1^4+30081644196816030000 x^{95} y^{18} v_1^4+150625715884935060000 x^{94} y^{19} v_1^4+708658639565448350625 x^{93} y^{20} v_1^4+3140567161553818057380 x^{92} y^{21} v_1^4+13139744273042622123000 x^{91} y^{22} v_1^4+52005388184487538300500 x^{90} y^{23} v_1^4+195065942115299950626750 x^{89} y^{24} v_1^4+694546351146134324294184 x^{88} y^{25} v_1^4+2351029797875248831274346 x^{87} y^{26} v_1^4+7576103216415059235039200 x^{86} y^{27} v_1^4+23270625589596767156096800 x^{85} y^{28} v_1^4+68209297263289492085557011 x^{84} y^{29} v_1^4+190990309290684675787740536 x^{83} y^{30} v_1^4+511368738825192489884687380 x^{82} y^{31} v_1^4+1310395198232361367847172375 x^{81} y^{32} v_1^4+3216445143074197822695451950 x^{80} y^{33} v_1^4+7568137672260877960466156568 x^{79} y^{34} v_1^4+17082413720714703069096888240 x^{78} y^{35} v_1^4+37011960050294836867738459410 x^{77} y^{36} v_1^4+77024974134809189553420037500 x^{76} y^{37} v_1^4+154050054754349129047726803840 x^{75} y^{38} v_1^4+296250233624577700850709040770 x^{74} y^{39} v_1^4+548063079782384070315267030090 x^{73} y^{40} v_1^4+975819791831103082531997028000 x^{72} y^{41} v_1^4+1672834098541061868861901422600 x^{71} y^{42} v_1^4+2762121588209030245297893930000 x^{70} y^{43} v_1^4+4394284506852664366189998273600 x^{69} y^{44} v_1^4+6737903058084327856311820371675 x^{68} y^{45} v_1^4+9960378562017604286378240677200 x^{67} y^{46} v_1^4+14198837631062929796823669756000 x^{66} y^{47} v_1^4+19523401827011641241490971354625 x^{65} y^{48} v_1^4+25898390242343372680790105717280 x^{64} y^{49} v_1^4+33149939556028570474288965650424 x^{63} y^{50} v_1^4+40949925365362924426125750777000 x^{62} y^{51} v_1^4+48824911033092587966948394506550 x^{61} y^{52} v_1^4+56194708937632501185840432063690 x^{60} y^{53} v_1^4+62438565493722481426544026185984 x^{59} y^{54} v_1^4+66979552079084807822640773866122 x^{58} y^{55} v_1^4+69371678940760492159316378077200 x^{57} y^{56} v_1^4+69371678940760492159316378077200 x^{56} y^{57} v_1^4+66979552079084807822640773866122 x^{55} y^{58} v_1^4+62438565493722481426544026185984 x^{54} y^{59} v_1^4+56194708937632501185840432063690 x^{53} y^{60} v_1^4+48824911033092587966948394506550 x^{52} y^{61} v_1^4+40949925365362924426125750777000 x^{51} y^{62} v_1^4+33149939556028570474288965650424 x^{50} y^{63} v_1^4+25898390242343372680790105717280 x^{49} y^{64} v_1^4+19523401827011641241490971354625 x^{48} y^{65} v_1^4+14198837631062929796823669756000 x^{47} y^{66} v_1^4+9960378562017604286378240677200 x^{46} y^{67} v_1^4+6737903058084327856311820371675 x^{45} y^{68} v_1^4+4394284506852664366189998273600 x^{44} y^{69} v_1^4+2762121588209030245297893930000 x^{43} y^{70} v_1^4+1672834098541061868861901422600 x^{42} y^{71} v_1^4+975819791831103082531997028000 x^{41} y^{72} v_1^4+548063079782384070315267030090 x^{40} y^{73} v_1^4+296250233624577700850709040770 x^{39} y^{74} v_1^4+154050054754349129047726803840 x^{38} y^{75} v_1^4+77024974134809189553420037500 x^{37} y^{76} v_1^4+37011960050294836867738459410 x^{36} y^{77} v_1^4+17082413720714703069096888240 x^{35} y^{78} v_1^4+7568137672260877960466156568 x^{34} y^{79} v_1^4+3216445143074197822695451950 x^{33} y^{80} v_1^4+1310395198232361367847172375 x^{32} y^{81} v_1^4+511368738825192489884687380 x^{31} y^{82} v_1^4+190990309290684675787740536 x^{30} y^{83} v_1^4+68209297263289492085557011 x^{29} y^{84} v_1^4+23270625589596767156096800 x^{28} y^{85} v_1^4+7576103216415059235039200 x^{27} y^{86} v_1^4+2351029797875248831274346 x^{26} y^{87} v_1^4+694546351146134324294184 x^{25} y^{88} v_1^4+195065942115299950626750 x^{24} y^{89} v_1^4+52005388184487538300500 x^{23} y^{90} v_1^4+13139744273042622123000 x^{22} y^{91} v_1^4+3140567161553818057380 x^{21} y^{92} v_1^4+708658639565448350625 x^{20} y^{93} v_1^4+150625715884935060000 x^{19} y^{94} v_1^4+30081644196816030000 x^{18} y^{95} v_1^4+5628744893856579075 x^{17} y^{96} v_1^4+983620514602124910 x^{16} y^{97} v_1^4+159934750878701520 x^{15} y^{98} v_1^4+24093380649379200 x^{14} y^{99} v_1^4+3345930702948540 x^{13} y^{100} v_1^4+425818765660470 x^{12} y^{101} v_1^4+49309369189080 x^{11} y^{102} v_1^4+5150627251770 x^{10} y^{103} v_1^4+480100728030 x^9 y^{104} v_1^4+39391065450 x^8 y^{105} v_1^4+2794469220 x^7 y^{106} v_1^4+167333040 x^6 y^{107} v_1^4+8175944 x^5 y^{108} v_1^4+309925 x^4 y^{109} v_1^4+8400 x^3 y^{110} v_1^4+140 x^2 y^{111} v_1^4+x y^{112} v_1^4\right) d^{113}+O[d]^{114}$
$(x+y) d+\left(-x^{30} y v_1-15 x^{29} y^2 v_1-145 x^{28} y^3 v_1-1015 x^{27} y^4 v_1-5481 x^{26} y^5 v_1-23751 x^{25} y^6 v_1-84825 x^{24} y^7 v_1-254475 x^{23} y^8 v_1-650325 x^{22} y^9 v_1-1430715 x^{21} y^{10} v_1-2731365 x^{20} y^{11} v_1-4552275 x^{19} y^{12} v_1-6653325 x^{18} y^{13} v_1-8554275 x^{17} y^{14} v_1-9694845 x^{16} y^{15} v_1-9694845 x^{15} y^{16} v_1-8554275 x^{14} y^{17} v_1-6653325 x^{13} y^{18} v_1-4552275 x^{12} y^{19} v_1-2731365 x^{11} y^{20} v_1-1430715 x^{10} y^{21} v_1-650325 x^9 y^{22} v_1-254475 x^8 y^{23} v_1-84825 x^7 y^{24} v_1-23751 x^6 y^{25} v_1-5481 x^5 y^{26} v_1-1015 x^4 y^{27} v_1-145 x^3 y^{28} v_1-15 x^2 y^{29} v_1-x y^{30} v_1\right) d^{31}+\left(x^{60} y v_1^2+45 x^{59} y^2 v_1^2+1030 x^{58} y^3 v_1^2+15950 x^{57} y^4 v_1^2+187311 x^{56} y^5 v_1^2+1771987 x^{55} y^6 v_1^2+14007580 x^{54} y^7 v_1^2+94805640 x^{53} y^8 v_1^2+558950205 x^{52} y^9 v_1^2+2907971781 x^{51} y^{10} v_1^2+13485145986 x^{50} y^{11} v_1^2+56192660550 x^{49} y^{12} v_1^2+211809758475 x^{48} y^{13} v_1^2+726213440475 x^{47} y^{14} v_1^2+2275478475000 x^{46} y^{15} v_1^2+6542010310470 x^{45} y^{16} v_1^2+17317094670225 x^{44} y^{17} v_1^2+42330682513875 x^{43} y^{18} v_1^2+95801022873150 x^{42} y^{19} v_1^2+201182150764980 x^{41} y^{20} v_1^2+392784200543295 x^{40} y^{21} v_1^2+714153092547225 x^{39} y^{22} v_1^2+1210955244138900 x^{38} y^{23} v_1^2+1917345803304750 x^{37} y^{24} v_1^2+2837671788914781 x^{36} y^{25} v_1^2+3929084015425947 x^{35} y^{26} v_1^2+5093257057034650 x^{34} y^{27} v_1^2+6184669283542220 x^{33} y^{28} v_1^2+7037727115754955 x^{32} y^{29} v_1^2+7506908923471953 x^{31} y^{30} v_1^2+7506908923471953 x^{30} y^{31} v_1^2+7037727115754955 x^{29} y^{32} v_1^2+6184669283542220 x^{28} y^{33} v_1^2+5093257057034650 x^{27} y^{34} v_1^2+3929084015425947 x^{26} y^{35} v_1^2+2837671788914781 x^{25} y^{36} v_1^2+1917345803304750 x^{24} y^{37} v_1^2+1210955244138900 x^{23} y^{38} v_1^2+714153092547225 x^{22} y^{39} v_1^2+392784200543295 x^{21} y^{40} v_1^2+201182150764980 x^{20} y^{41} v_1^2+95801022873150 x^{19} y^{42} v_1^2+42330682513875 x^{18} y^{43} v_1^2+17317094670225 x^{17} y^{44} v_1^2+6542010310470 x^{16} y^{45} v_1^2+2275478475000 x^{15} y^{46} v_1^2+726213440475 x^{14} y^{47} v_1^2+211809758475 x^{13} y^{48} v_1^2+56192660550 x^{12} y^{49} v_1^2+13485145986 x^{11} y^{50} v_1^2+2907971781 x^{10} y^{51} v_1^2+558950205 x^9 y^{52} v_1^2+94805640 x^8 y^{53} v_1^2+14007580 x^7 y^{54} v_1^2+1771987 x^6 y^{55} v_1^2+187311 x^5 y^{56} v_1^2+15950 x^4 y^{57} v_1^2+1030 x^3 y^{58} v_1^2+45 x^2 y^{59} v_1^2+x y^{60} v_1^2\right) d^{61}+\left(-x^{90} y v_1^3-90 x^{89} y^2 v_1^3-3700 x^{88} y^3 v_1^3-97350 x^{87} y^4 v_1^3-1881201 x^{86} y^5 v_1^3-28735868 x^{85} y^6 v_1^3-362943120 x^{84} y^7 v_1^3-3905708400 x^{83} y^8 v_1^3-36578261005 x^{82} y^9 v_1^3-302849712022 x^{81} y^{10} v_1^3-2243560298148 x^{80} y^{11} v_1^3-15013261314870 x^{79} y^{12} v_1^3-91446243902685 x^{78} y^{13} v_1^3-510212429469720 x^{77} y^{14} v_1^3-2621365949752896 x^{76} y^{15} v_1^3-12458030271636726 x^{75} y^{16} v_1^3-54979215351891075 x^{74} y^{17} v_1^3-226067993795843850 x^{73} y^{18} v_1^3-868672829817431100 x^{72} y^{19} v_1^3-3127423369493516940 x^{71} y^{20} v_1^3-10574062271535767235 x^{70} y^{21} v_1^3-33645457744342715700 x^{69} y^{22} v_1^3-100937584188272286000 x^{68} y^{23} v_1^3-285991739212574781750 x^{67} y^{24} v_1^3-766460698761489329871 x^{66} y^{25} v_1^3-1945634933632411417158 x^{65} y^{26} v_1^3-4683941044594343779660 x^{64} y^{27} v_1^3-10706157143742069324300 x^{63} y^{28} v_1^3-23258210487925404287055 x^{62} y^{29} v_1^3-48066975848621425665200 x^{61} y^{30} v_1^3-94583411596131728813153 x^{60} y^{31} v_1^3-177343903780474107279615 x^{59} y^{32} v_1^3-317069409913395717769330 x^{58} y^{33} v_1^3-540883116121990928521750 x^{57} y^{34} v_1^3-880866793042040670421107 x^{56} y^{35} v_1^3-1370237236458623942611797 x^{55} y^{36} v_1^3-2036839137193678688336900 x^{54} y^{37} v_1^3-2894455617223024939238460 x^{53} y^{38} v_1^3-3933490967709545829853365 x^{52} y^{39} v_1^3-5113538258415193052717403 x^{51} y^{40} v_1^3-6360742711888369891790022 x^{50} y^{41} v_1^3-7572312752343844364116050 x^{49} y^{42} v_1^3-8628914531782926505800375 x^{48} y^{43} v_1^3-9413361307416642217625025 x^{47} y^{44} v_1^3-9831732921085387614681000 x^{46} y^{45} v_1^3-9831732921085387614681000 x^{45} y^{46} v_1^3-9413361307416642217625025 x^{44} y^{47} v_1^3-8628914531782926505800375 x^{43} y^{48} v_1^3-7572312752343844364116050 x^{42} y^{49} v_1^3-6360742711888369891790022 x^{41} y^{50} v_1^3-5113538258415193052717403 x^{40} y^{51} v_1^3-3933490967709545829853365 x^{39} y^{52} v_1^3-2894455617223024939238460 x^{38} y^{53} v_1^3-2036839137193678688336900 x^{37} y^{54} v_1^3-1370237236458623942611797 x^{36} y^{55} v_1^3-880866793042040670421107 x^{35} y^{56} v_1^3-540883116121990928521750 x^{34} y^{57} v_1^3-317069409913395717769330 x^{33} y^{58} v_1^3-177343903780474107279615 x^{32} y^{59} v_1^3-94583411596131728813153 x^{31} y^{60} v_1^3-48066975848621425665200 x^{30} y^{61} v_1^3-23258210487925404287055 x^{29} y^{62} v_1^3-10706157143742069324300 x^{28} y^{63} v_1^3-4683941044594343779660 x^{27} y^{64} v_1^3-1945634933632411417158 x^{26} y^{65} v_1^3-766460698761489329871 x^{25} y^{66} v_1^3-285991739212574781750 x^{24} y^{67} v_1^3-100937584188272286000 x^{23} y^{68} v_1^3-33645457744342715700 x^{22} y^{69} v_1^3-10574062271535767235 x^{21} y^{70} v_1^3-3127423369493516940 x^{20} y^{71} v_1^3-868672829817431100 x^{19} y^{72} v_1^3-226067993795843850 x^{18} y^{73} v_1^3-54979215351891075 x^{17} y^{74} v_1^3-12458030271636726 x^{16} y^{75} v_1^3-2621365949752896 x^{15} y^{76} v_1^3-510212429469720 x^{14} y^{77} v_1^3-91446243902685 x^{13} y^{78} v_1^3-15013261314870 x^{12} y^{79} v_1^3-2243560298148 x^{11} y^{80} v_1^3-302849712022 x^{10} y^{81} v_1^3-36578261005 x^9 y^{82} v_1^3-3905708400 x^8 y^{83} v_1^3-362943120 x^7 y^{84} v_1^3-28735868 x^6 y^{85} v_1^3-1881201 x^5 y^{86} v_1^3-97350 x^4 y^{87} v_1^3-3700 x^3 y^{88} v_1^3-90 x^2 y^{89} v_1^3-x y^{90} v_1^3\right) d^{91}+\left(x^{120} y v_1^4+150 x^{119} y^2 v_1^4+9650 x^{118} y^3 v_1^4+382025 x^{117} y^4 v_1^4+10820586 x^{116} y^5 v_1^4+237933864 x^{115} y^6 v_1^4+4271856600 x^{114} y^7 v_1^4+64779664950 x^{113} y^8 v_1^4+849922943155 x^{112} y^9 v_1^4+9821986675358 x^{111} y^{10} v_1^4+101356334931306 x^{110} y^{11} v_1^4+944112998185175 x^{109} y^{12} v_1^4+8007470613301460 x^{108} y^{13} v_1^4+62282128589223840 x^{107} y^{14} v_1^4+446900549886216288 x^{106} y^{15} v_1^4+2973174173267819634 x^{105} y^{16} v_1^4+18418702050241365285 x^{104} y^{17} v_1^4+106645235395190398830 x^{103} y^{18} v_1^4+578998106814270645810 x^{102} y^{19} v_1^4+2956017768122273810571 x^{101} y^{20} v_1^4+14227611899431043141886 x^{100} y^{21} v_1^4+64704608636976356997000 x^{99} y^{22} v_1^4+278612079108564765447000 x^{98} y^{23} v_1^4+1137951981432518700357000 x^{97} y^{24} v_1^4+4416020148656934046715031 x^{96} y^{25} v_1^4+16307250799205388891595734 x^{95} y^{26} v_1^4+57382047864174666369764650 x^{94} y^{27} v_1^4+192650438272587264882105625 x^{93} y^{28} v_1^4+617833284394991912784832680 x^{92} y^{29} v_1^4+1894736805787157153965818752 x^{91} y^{30} v_1^4+5562063916528734874015571425 x^{90} y^{31} v_1^4+15643482109140847307276074245 x^{89} y^{32} v_1^4+42190314272850380375947181445 x^{88} y^{33} v_1^4+109199001354022988846321217090 x^{87} y^{34} v_1^4+271438398518221614315811490175 x^{86} y^{35} v_1^4+648437544475210315045043344346 x^{85} y^{36} v_1^4+1489655855228133863376694869890 x^{84} y^{37} v_1^4+3292926363907281552593672971320 x^{83} y^{38} v_1^4+7008026707960310500954821720605 x^{82} y^{39} v_1^4+14366459864856894942075451809583 x^{81} y^{40} v_1^4+28382524630338040919676739836423 x^{80} y^{41} v_1^4+54061959249147115996098039427050 x^{79} y^{42} v_1^4+99323143063394116957477609773915 x^{78} y^{43} v_1^4+176072853934832696406425093487660 x^{77} y^{44} v_1^4+301280226564668867396684839778364 x^{76} y^{45} v_1^4+497767340677707567235914476462208 x^{75} y^{46} v_1^4+794309595601192511849436161495475 x^{74} y^{47} v_1^4+1224560635180752902791183587273825 x^{73} y^{48} v_1^4+1824345443657923882972269971756625 x^{72} y^{49} v_1^4+2627057445228151852479563714018778 x^{71} y^{50} v_1^4+3657276056313510012905188928318001 x^{70} y^{51} v_1^4+4923256233586278673844242319825550 x^{69} y^{52} v_1^4+6409522269261453861726201550947510 x^{68} y^{53} v_1^4+8071250267032616893520658372577320 x^{67} y^{54} v_1^4+9832250326664167607719657914471855 x^{66} y^{55} v_1^4+11588009314448446716316668600052731 x^{65} y^{56} v_1^4+13214396587190401893137733950650035 x^{64} y^{57} v_1^4+14581403131004758184636860111557330 x^{63} y^{58} v_1^4+15569972834967602848391769643901325 x^{62} y^{59} v_1^4+16088971929537072870763437443081232 x^{61} y^{60} v_1^4+16088971929537072870763437443081232 x^{60} y^{61} v_1^4+15569972834967602848391769643901325 x^{59} y^{62} v_1^4+14581403131004758184636860111557330 x^{58} y^{63} v_1^4+13214396587190401893137733950650035 x^{57} y^{64} v_1^4+11588009314448446716316668600052731 x^{56} y^{65} v_1^4+9832250326664167607719657914471855 x^{55} y^{66} v_1^4+8071250267032616893520658372577320 x^{54} y^{67} v_1^4+6409522269261453861726201550947510 x^{53} y^{68} v_1^4+4923256233586278673844242319825550 x^{52} y^{69} v_1^4+3657276056313510012905188928318001 x^{51} y^{70} v_1^4+2627057445228151852479563714018778 x^{50} y^{71} v_1^4+1824345443657923882972269971756625 x^{49} y^{72} v_1^4+1224560635180752902791183587273825 x^{48} y^{73} v_1^4+794309595601192511849436161495475 x^{47} y^{74} v_1^4+497767340677707567235914476462208 x^{46} y^{75} v_1^4+301280226564668867396684839778364 x^{45} y^{76} v_1^4+176072853934832696406425093487660 x^{44} y^{77} v_1^4+99323143063394116957477609773915 x^{43} y^{78} v_1^4+54061959249147115996098039427050 x^{42} y^{79} v_1^4+28382524630338040919676739836423 x^{41} y^{80} v_1^4+14366459864856894942075451809583 x^{40} y^{81} v_1^4+7008026707960310500954821720605 x^{39} y^{82} v_1^4+3292926363907281552593672971320 x^{38} y^{83} v_1^4+1489655855228133863376694869890 x^{37} y^{84} v_1^4+648437544475210315045043344346 x^{36} y^{85} v_1^4+271438398518221614315811490175 x^{35} y^{86} v_1^4+109199001354022988846321217090 x^{34} y^{87} v_1^4+42190314272850380375947181445 x^{33} y^{88} v_1^4+15643482109140847307276074245 x^{32} y^{89} v_1^4+5562063916528734874015571425 x^{31} y^{90} v_1^4+1894736805787157153965818752 x^{30} y^{91} v_1^4+617833284394991912784832680 x^{29} y^{92} v_1^4+192650438272587264882105625 x^{28} y^{93} v_1^4+57382047864174666369764650 x^{27} y^{94} v_1^4+16307250799205388891595734 x^{26} y^{95} v_1^4+4416020148656934046715031 x^{25} y^{96} v_1^4+1137951981432518700357000 x^{24} y^{97} v_1^4+278612079108564765447000 x^{23} y^{98} v_1^4+64704608636976356997000 x^{22} y^{99} v_1^4+14227611899431043141886 x^{21} y^{100} v_1^4+2956017768122273810571 x^{20} y^{101} v_1^4+578998106814270645810 x^{19} y^{102} v_1^4+106645235395190398830 x^{18} y^{103} v_1^4+18418702050241365285 x^{17} y^{104} v_1^4+2973174173267819634 x^{16} y^{105} v_1^4+446900549886216288 x^{15} y^{106} v_1^4+62282128589223840 x^{14} y^{107} v_1^4+8007470613301460 x^{13} y^{108} v_1^4+944112998185175 x^{12} y^{109} v_1^4+101356334931306 x^{11} y^{110} v_1^4+9821986675358 x^{10} y^{111} v_1^4+849922943155 x^9 y^{112} v_1^4+64779664950 x^8 y^{113} v_1^4+4271856600 x^7 y^{114} v_1^4+237933864 x^6 y^{115} v_1^4+10820586 x^5 y^{116} v_1^4+382025 x^4 y^{117} v_1^4+9650 x^3 y^{118} v_1^4+150 x^2 y^{119} v_1^4+x y^{120} v_1^4\right) d^{121}+O[d]^{122}$
$(x+y) d+\left(-x^{36} y v_1-18 x^{35} y^2 v_1-210 x^{34} y^3 v_1-1785 x^{33} y^4 v_1-11781 x^{32} y^5 v_1-62832 x^{31} y^6 v_1-278256 x^{30} y^7 v_1-1043460 x^{29} y^8 v_1-3362260 x^{28} y^9 v_1-9414328 x^{27} y^{10} v_1-23107896 x^{26} y^{11} v_1-50067108 x^{25} y^{12} v_1-96282900 x^{24} y^{13} v_1-165056400 x^{23} y^{14} v_1-253086480 x^{22} y^{15} v_1-347993910 x^{21} y^{16} v_1-429874830 x^{20} y^{17} v_1-477638700 x^{19} y^{18} v_1-477638700 x^{18} y^{19} v_1-429874830 x^{17} y^{20} v_1-347993910 x^{16} y^{21} v_1-253086480 x^{15} y^{22} v_1-165056400 x^{14} y^{23} v_1-96282900 x^{13} y^{24} v_1-50067108 x^{12} y^{25} v_1-23107896 x^{11} y^{26} v_1-9414328 x^{10} y^{27} v_1-3362260 x^9 y^{28} v_1-1043460 x^8 y^{29} v_1-278256 x^7 y^{30} v_1-62832 x^6 y^{31} v_1-11781 x^5 y^{32} v_1-1785 x^4 y^{33} v_1-210 x^3 y^{34} v_1-18 x^2 y^{35} v_1-x y^{36} v_1\right) d^{37}+\left(x^{72} y v_1^2+54 x^{71} y^2 v_1^2+1488 x^{70} y^3 v_1^2+27825 x^{69} y^4 v_1^2+395766 x^{68} y^5 v_1^2+4548180 x^{67} y^6 v_1^2+43810836 x^{66} y^7 v_1^2+362482857 x^{65} y^8 v_1^2+2621294005 x^{64} y^9 v_1^2+16785695960 x^{63} y^{10} v_1^2+96159366576 x^{62} y^{11} v_1^2+496873461084 x^{61} y^{12} v_1^2+2331579446448 x^{60} y^{13} v_1^2+9992648398320 x^{59} y^{14} v_1^2+39304670119872 x^{58} y^{15} v_1^2+142479777178446 x^{57} y^{16} v_1^2+477726741590796 x^{56} y^{17} v_1^2+1486261451476732 x^{55} y^{18} v_1^2+4302336258229240 x^{54} y^{19} v_1^2+11616308327093778 x^{53} y^{20} v_1^2+29317349935421064 x^{52} y^{21} v_1^2+69295554645899904 x^{51} y^{22} v_1^2+153655360466834448 x^{50} y^{23} v_1^2+320115334402188000 x^{49} y^{24} v_1^2+627426055478355588 x^{48} y^{25} v_1^2+1158325025521610520 x^{47} y^{26} v_1^2+2016343562954440048 x^{46} y^{27} v_1^2+3312564424857085196 x^{45} y^{28} v_1^2+5140186176503417040 x^{44} y^{29} v_1^2+7538939725538623248 x^{43} y^{30} v_1^2+10457238974134282176 x^{42} y^{31} v_1^2+13725126153551257137 x^{41} y^{32} v_1^2+17052429463503078834 x^{40} y^{33} v_1^2+20061681721768328250 x^{39} y^{34} v_1^2+22354445347113280068 x^{38} y^{35} v_1^2+23596358977508462295 x^{37} y^{36} v_1^2+23596358977508462295 x^{36} y^{37} v_1^2+22354445347113280068 x^{35} y^{38} v_1^2+20061681721768328250 x^{34} y^{39} v_1^2+17052429463503078834 x^{33} y^{40} v_1^2+13725126153551257137 x^{32} y^{41} v_1^2+10457238974134282176 x^{31} y^{42} v_1^2+7538939725538623248 x^{30} y^{43} v_1^2+5140186176503417040 x^{29} y^{44} v_1^2+3312564424857085196 x^{28} y^{45} v_1^2+2016343562954440048 x^{27} y^{46} v_1^2+1158325025521610520 x^{26} y^{47} v_1^2+627426055478355588 x^{25} y^{48} v_1^2+320115334402188000 x^{24} y^{49} v_1^2+153655360466834448 x^{23} y^{50} v_1^2+69295554645899904 x^{22} y^{51} v_1^2+29317349935421064 x^{21} y^{52} v_1^2+11616308327093778 x^{20} y^{53} v_1^2+4302336258229240 x^{19} y^{54} v_1^2+1486261451476732 x^{18} y^{55} v_1^2+477726741590796 x^{17} y^{56} v_1^2+142479777178446 x^{16} y^{57} v_1^2+39304670119872 x^{15} y^{58} v_1^2+9992648398320 x^{14} y^{59} v_1^2+2331579446448 x^{13} y^{60} v_1^2+496873461084 x^{12} y^{61} v_1^2+96159366576 x^{11} y^{62} v_1^2+16785695960 x^{10} y^{63} v_1^2+2621294005 x^9 y^{64} v_1^2+362482857 x^8 y^{65} v_1^2+43810836 x^7 y^{66} v_1^2+4548180 x^6 y^{67} v_1^2+395766 x^5 y^{68} v_1^2+27825 x^4 y^{69} v_1^2+1488 x^3 y^{70} v_1^2+54 x^2 y^{71} v_1^2+x y^{72} v_1^2\right) d^{73}+\left(-x^{108} y v_1^3-108 x^{107} y^2 v_1^3-5340 x^{106} y^3 v_1^3-169335 x^{105} y^4 v_1^3-3951801 x^{104} y^5 v_1^3-73046064 x^{103} y^6 v_1^3-1118631492 x^{102} y^7 v_1^3-14625034380 x^{101} y^8 v_1^3-166746679825 x^{100} y^9 v_1^3-1684252494210 x^{99} y^{10} v_1^3-15254431814466 x^{98} y^{11} v_1^3-125074733279223 x^{97} y^{12} v_1^3-935581512376035 x^{96} y^{13} v_1^3-6425408733262560 x^{95} y^{14} v_1^3-40733559980782752 x^{94} y^{15} v_1^3-239452144664277114 x^{93} y^{16} v_1^3-1310421812257930302 x^{92} y^{17} v_1^3-6699197746325342720 x^{91} y^{18} v_1^3-32089933647605923320 x^{90} y^{19} v_1^3-144416317722553748718 x^{89} y^{20} v_1^3-612079425793139403726 x^{88} y^{21} v_1^3-2448386998727203514808 x^{87} y^{22} v_1^3-9261443607067714912200 x^{86} y^{23} v_1^3-33187159707327047290050 x^{85} y^{24} v_1^3-112836970430967439141758 x^{84} y^{25} v_1^3-364551370486612632683892 x^{83} y^{26} v_1^3-1120659933024631417875716 x^{82} y^{27} v_1^3-3281935973565131152292650 x^{81} y^{28} v_1^3-9166791824971542825337890 x^{80} y^{29} v_1^3-24444785738863839739524288 x^{79} y^{30} v_1^3-62294787017569404438231168 x^{78} y^{31} v_1^3-151843557080451576869445609 x^{77} y^{32} v_1^3-354301650240149809531785255 x^{76} y^{33} v_1^3-791968414716134237192318820 x^{75} y^{34} v_1^3-1697075196746161569668248968 x^{74} y^{35} v_1^3-3488432372463468870715418507 x^{73} y^{36} v_1^3-6882582812510770533244287998 x^{72} y^{37} v_1^3-13040683246059063199576141536 x^{71} y^{38} v_1^3-23740731057758950623560790948 x^{70} y^{39} v_1^3-41546279368130593054734460389 x^{69} y^{40} v_1^3-69919348218627831538348229013 x^{68} y^{41} v_1^3-113202754269188013845745059814 x^{67} y^{42} v_1^3-176385686892087705485180815794 x^{66} y^{43} v_1^3-264578530343271744404208924477 x^{65} y^{44} v_1^3-382168988276927306341524167536 x^{64} y^{45} v_1^3-531713374996002161077949742352 x^{63} y^{46} v_1^3-712722183506437817511762779088 x^{62} y^{47} v_1^3-920599487029776273550632763416 x^{61} y^{48} v_1^3-1146052422629225271585000503148 x^{60} y^{49} v_1^3-1375262907155223978464572102488 x^{59} y^{50} v_1^3-1590990422003171533590792930216 x^{58} y^{51} v_1^3-1774566239926643676361380094140 x^{57} y^{52} v_1^3-1908495767468288624445145323864 x^{56} y^{53} v_1^3-1979180795893043861896084322792 x^{55} y^{54} v_1^3-1979180795893043861896084322792 x^{54} y^{55} v_1^3-1908495767468288624445145323864 x^{53} y^{56} v_1^3-1774566239926643676361380094140 x^{52} y^{57} v_1^3-1590990422003171533590792930216 x^{51} y^{58} v_1^3-1375262907155223978464572102488 x^{50} y^{59} v_1^3-1146052422629225271585000503148 x^{49} y^{60} v_1^3-920599487029776273550632763416 x^{48} y^{61} v_1^3-712722183506437817511762779088 x^{47} y^{62} v_1^3-531713374996002161077949742352 x^{46} y^{63} v_1^3-382168988276927306341524167536 x^{45} y^{64} v_1^3-264578530343271744404208924477 x^{44} y^{65} v_1^3-176385686892087705485180815794 x^{43} y^{66} v_1^3-113202754269188013845745059814 x^{42} y^{67} v_1^3-69919348218627831538348229013 x^{41} y^{68} v_1^3-41546279368130593054734460389 x^{40} y^{69} v_1^3-23740731057758950623560790948 x^{39} y^{70} v_1^3-13040683246059063199576141536 x^{38} y^{71} v_1^3-6882582812510770533244287998 x^{37} y^{72} v_1^3-3488432372463468870715418507 x^{36} y^{73} v_1^3-1697075196746161569668248968 x^{35} y^{74} v_1^3-791968414716134237192318820 x^{34} y^{75} v_1^3-354301650240149809531785255 x^{33} y^{76} v_1^3-151843557080451576869445609 x^{32} y^{77} v_1^3-62294787017569404438231168 x^{31} y^{78} v_1^3-24444785738863839739524288 x^{30} y^{79} v_1^3-9166791824971542825337890 x^{29} y^{80} v_1^3-3281935973565131152292650 x^{28} y^{81} v_1^3-1120659933024631417875716 x^{27} y^{82} v_1^3-364551370486612632683892 x^{26} y^{83} v_1^3-112836970430967439141758 x^{25} y^{84} v_1^3-33187159707327047290050 x^{24} y^{85} v_1^3-9261443607067714912200 x^{23} y^{86} v_1^3-2448386998727203514808 x^{22} y^{87} v_1^3-612079425793139403726 x^{21} y^{88} v_1^3-144416317722553748718 x^{20} y^{89} v_1^3-32089933647605923320 x^{19} y^{90} v_1^3-6699197746325342720 x^{18} y^{91} v_1^3-1310421812257930302 x^{17} y^{92} v_1^3-239452144664277114 x^{16} y^{93} v_1^3-40733559980782752 x^{15} y^{94} v_1^3-6425408733262560 x^{14} y^{95} v_1^3-935581512376035 x^{13} y^{96} v_1^3-125074733279223 x^{12} y^{97} v_1^3-15254431814466 x^{11} y^{98} v_1^3-1684252494210 x^{10} y^{99} v_1^3-166746679825 x^9 y^{100} v_1^3-14625034380 x^8 y^{101} v_1^3-1118631492 x^7 y^{102} v_1^3-73046064 x^6 y^{103} v_1^3-3951801 x^5 y^{104} v_1^3-169335 x^4 y^{105} v_1^3-5340 x^3 y^{106} v_1^3-108 x^2 y^{107} v_1^3-x y^{108} v_1^3\right) d^{109}+\left(x^{144} y v_1^4+180 x^{143} y^2 v_1^4+13920 x^{142} y^3 v_1^4+663495 x^{141} y^4 v_1^4+22662360 x^{140} y^5 v_1^4+601834464 x^{139} y^6 v_1^4+13069344420 x^{138} y^7 v_1^4+240071225625 x^{137} y^8 v_1^4+3821164225450 x^{136} y^9 v_1^4+53652085960330 x^{135} y^{10} v_1^4+673711850418516 x^{134} y^{11} v_1^4+7648190396285985 x^{133} y^{12} v_1^4+79182452489763420 x^{132} y^{13} v_1^4+753002817922460520 x^{131} y^{14} v_1^4+6616958169836937960 x^{130} y^{15} v_1^4+54002237274589398039 x^{129} y^{16} v_1^4+411092104660612774245 x^{128} y^{17} v_1^4+2930020830888460626240 x^{127} y^{18} v_1^4+19616966013796790109240 x^{126} y^{19} v_1^4+123731302204642331436930 x^{125} y^{20} v_1^4+737107925881997493194976 x^{124} y^{21} v_1^4+4157056696515440346977400 x^{123} y^{22} v_1^4+22240477690189640005269600 x^{122} y^{23} v_1^4+113088948751504663740743850 x^{121} y^{24} v_1^4+547463348927713539944341992 x^{120} y^{25} v_1^4+2527118469498395258529646932 x^{119} y^{26} v_1^4+11139161321796322252344838120 x^{118} y^{27} v_1^4+46946890363543780337462681870 x^{117} y^{28} v_1^4+189415586534398154283623054400 x^{116} y^{29} v_1^4+732431379385411727069748667968 x^{115} y^{30} v_1^4+2717146444119996556921247805888 x^{114} y^{31} v_1^4+9679986050734568185608814754085 x^{113} y^{32} v_1^4+33146973202650428179318503518940 x^{112} y^{33} v_1^4+109190821341851420724933439204740 x^{111} y^{34} v_1^4+346292587616496966174930004012572 x^{110} y^{35} v_1^4+1058119728371668749003379061012477 x^{109} y^{36} v_1^4+3117170406704755582158866153757187 x^{108} y^{37} v_1^4+8859339459738867187304187592083012 x^{107} y^{38} v_1^4+24306416617450513888221086954454300 x^{106} y^{39} v_1^4+64412045582523229934378935163750133 x^{105} y^{40} v_1^4+164957747630688197728070274742765203 x^{104} y^{41} v_1^4+408466916859696473086092621288788238 x^{103} y^{42} v_1^4+978420930724029606689276182511547048 x^{102} y^{43} v_1^4+2268157876711508067869611915619774175 x^{101} y^{44} v_1^4+5090754727677039718145768608201250187 x^{100} y^{45} v_1^4+11066858635359113513710353341981417052 x^{99} y^{46} v_1^4+23311043370180741758721324195064127202 x^{98} y^{47} v_1^4+47593381134718501453832279304423735252 x^{97} y^{48} v_1^4+94215469922944149997015454447857120185 x^{96} y^{49} v_1^4+180893703627315675149491854687954011256 x^{95} y^{50} v_1^4+336958861288931385516918901856008050336 x^{94} y^{51} v_1^4+609117943335326821437923442127275539388 x^{93} y^{52} v_1^4+1068829600591239057915545437056142444458 x^{92} y^{53} v_1^4+1820968951134625116783962776756035717280 x^{91} y^{54} v_1^4+3012875902947378716379061783530332397064 x^{90} y^{55} v_1^4+4842121988788211561597350526042384299524 x^{89} y^{56} v_1^4+7560506264970194818335611124439712006802 x^{88} y^{57} v_1^4+11471112955338872214411288593606282396952 x^{87} y^{58} v_1^4+16915030969417328711236112770913383335480 x^{86} y^{59} v_1^4+24244877723977556895459584406430458576516 x^{85} y^{60} v_1^4+33783846009741785278720859870661943572426 x^{84} y^{61} v_1^4+45771662336491914988897513832581736523864 x^{83} y^{62} v_1^4+60302348793052807245166317997830896071204 x^{82} y^{63} v_1^4+77262384391481076835300733053253355605505 x^{81} y^{64} v_1^4+96280817472725608650690125875756493052804 x^{80} y^{65} v_1^4+116704021179237718394647603953016899258114 x^{79} y^{66} v_1^4+137606233927871080695151088641382993104176 x^{78} y^{67} v_1^4+157842444799686675748636238767043161171581 x^{77} y^{68} v_1^4+176143018109836652666195597119009871603865 x^{76} y^{69} v_1^4+191240991090703150383992717945755358308296 x^{75} y^{70} v_1^4+202015131433853560136321413089451159933236 x^{74} y^{71} v_1^4+207626662862576852951190640668633666296829 x^{73} y^{72} v_1^4+207626662862576852951190640668633666296829 x^{72} y^{73} v_1^4+202015131433853560136321413089451159933236 x^{71} y^{74} v_1^4+191240991090703150383992717945755358308296 x^{70} y^{75} v_1^4+176143018109836652666195597119009871603865 x^{69} y^{76} v_1^4+157842444799686675748636238767043161171581 x^{68} y^{77} v_1^4+137606233927871080695151088641382993104176 x^{67} y^{78} v_1^4+116704021179237718394647603953016899258114 x^{66} y^{79} v_1^4+96280817472725608650690125875756493052804 x^{65} y^{80} v_1^4+77262384391481076835300733053253355605505 x^{64} y^{81} v_1^4+60302348793052807245166317997830896071204 x^{63} y^{82} v_1^4+45771662336491914988897513832581736523864 x^{62} y^{83} v_1^4+33783846009741785278720859870661943572426 x^{61} y^{84} v_1^4+24244877723977556895459584406430458576516 x^{60} y^{85} v_1^4+16915030969417328711236112770913383335480 x^{59} y^{86} v_1^4+11471112955338872214411288593606282396952 x^{58} y^{87} v_1^4+7560506264970194818335611124439712006802 x^{57} y^{88} v_1^4+4842121988788211561597350526042384299524 x^{56} y^{89} v_1^4+3012875902947378716379061783530332397064 x^{55} y^{90} v_1^4+1820968951134625116783962776756035717280 x^{54} y^{91} v_1^4+1068829600591239057915545437056142444458 x^{53} y^{92} v_1^4+609117943335326821437923442127275539388 x^{52} y^{93} v_1^4+336958861288931385516918901856008050336 x^{51} y^{94} v_1^4+180893703627315675149491854687954011256 x^{50} y^{95} v_1^4+94215469922944149997015454447857120185 x^{49} y^{96} v_1^4+47593381134718501453832279304423735252 x^{48} y^{97} v_1^4+23311043370180741758721324195064127202 x^{47} y^{98} v_1^4+11066858635359113513710353341981417052 x^{46} y^{99} v_1^4+5090754727677039718145768608201250187 x^{45} y^{100} v_1^4+2268157876711508067869611915619774175 x^{44} y^{101} v_1^4+978420930724029606689276182511547048 x^{43} y^{102} v_1^4+408466916859696473086092621288788238 x^{42} y^{103} v_1^4+164957747630688197728070274742765203 x^{41} y^{104} v_1^4+64412045582523229934378935163750133 x^{40} y^{105} v_1^4+24306416617450513888221086954454300 x^{39} y^{106} v_1^4+8859339459738867187304187592083012 x^{38} y^{107} v_1^4+3117170406704755582158866153757187 x^{37} y^{108} v_1^4+1058119728371668749003379061012477 x^{36} y^{109} v_1^4+346292587616496966174930004012572 x^{35} y^{110} v_1^4+109190821341851420724933439204740 x^{34} y^{111} v_1^4+33146973202650428179318503518940 x^{33} y^{112} v_1^4+9679986050734568185608814754085 x^{32} y^{113} v_1^4+2717146444119996556921247805888 x^{31} y^{114} v_1^4+732431379385411727069748667968 x^{30} y^{115} v_1^4+189415586534398154283623054400 x^{29} y^{116} v_1^4+46946890363543780337462681870 x^{28} y^{117} v_1^4+11139161321796322252344838120 x^{27} y^{118} v_1^4+2527118469498395258529646932 x^{26} y^{119} v_1^4+547463348927713539944341992 x^{25} y^{120} v_1^4+113088948751504663740743850 x^{24} y^{121} v_1^4+22240477690189640005269600 x^{23} y^{122} v_1^4+4157056696515440346977400 x^{22} y^{123} v_1^4+737107925881997493194976 x^{21} y^{124} v_1^4+123731302204642331436930 x^{20} y^{125} v_1^4+19616966013796790109240 x^{19} y^{126} v_1^4+2930020830888460626240 x^{18} y^{127} v_1^4+411092104660612774245 x^{17} y^{128} v_1^4+54002237274589398039 x^{16} y^{129} v_1^4+6616958169836937960 x^{15} y^{130} v_1^4+753002817922460520 x^{14} y^{131} v_1^4+79182452489763420 x^{13} y^{132} v_1^4+7648190396285985 x^{12} y^{133} v_1^4+673711850418516 x^{11} y^{134} v_1^4+53652085960330 x^{10} y^{135} v_1^4+3821164225450 x^9 y^{136} v_1^4+240071225625 x^8 y^{137} v_1^4+13069344420 x^7 y^{138} v_1^4+601834464 x^6 y^{139} v_1^4+22662360 x^5 y^{140} v_1^4+663495 x^4 y^{141} v_1^4+13920 x^3 y^{142} v_1^4+180 x^2 y^{143} v_1^4+x y^{144} v_1^4\right) d^{145}+O[d]^{146}$
$(x+y) d+\left(-x^{40} y v_1-20 x^{39} y^2 v_1-260 x^{38} y^3 v_1-2470 x^{37} y^4 v_1-18278 x^{36} y^5 v_1-109668 x^{35} y^6 v_1-548340 x^{34} y^7 v_1-2330445 x^{33} y^8 v_1-8544965 x^{32} y^9 v_1-27343888 x^{31} y^{10} v_1-77060048 x^{30} y^{11} v_1-192650120 x^{29} y^{12} v_1-429757960 x^{28} y^{13} v_1-859515920 x^{27} y^{14} v_1-1547128656 x^{26} y^{15} v_1-2514084066 x^{25} y^{16} v_1-3697182450 x^{24} y^{17} v_1-4929576600 x^{23} y^{18} v_1-5967382200 x^{22} y^{19} v_1-6564120420 x^{21} y^{20} v_1-6564120420 x^{20} y^{21} v_1-5967382200 x^{19} y^{22} v_1-4929576600 x^{18} y^{23} v_1-3697182450 x^{17} y^{24} v_1-2514084066 x^{16} y^{25} v_1-1547128656 x^{15} y^{26} v_1-859515920 x^{14} y^{27} v_1-429757960 x^{13} y^{28} v_1-192650120 x^{12} y^{29} v_1-77060048 x^{11} y^{30} v_1-27343888 x^{10} y^{31} v_1-8544965 x^9 y^{32} v_1-2330445 x^8 y^{33} v_1-548340 x^7 y^{34} v_1-109668 x^6 y^{35} v_1-18278 x^5 y^{36} v_1-2470 x^4 y^{37} v_1-260 x^3 y^{38} v_1-20 x^2 y^{39} v_1-x y^{40} v_1\right) d^{41}+\left(x^{80} y v_1^2+60 x^{79} y^2 v_1^2+1840 x^{78} y^3 v_1^2+38350 x^{77} y^4 v_1^2+608868 x^{76} y^5 v_1^2+7821996 x^{75} y^6 v_1^2+84355440 x^{74} y^7 v_1^2+782618265 x^{73} y^8 v_1^2+6356448670 x^{72} y^9 v_1^2+45793774312 x^{71} y^{10} v_1^2+295655057880 x^{70} y^{11} v_1^2+1724847154420 x^{69} y^{12} v_1^2+9155387731420 x^{68} y^{13} v_1^2+44469885639960 x^{67} y^{14} v_1^2+198633702987144 x^{66} y^{15} v_1^2+819366538906035 x^{65} y^{16} v_1^2+3132875757705525 x^{64} y^{17} v_1^2+11139118734751800 x^{63} y^{18} v_1^2+36934978614190800 x^{62} y^{19} v_1^2+114498440268111900 x^{61} y^{20} v_1^2+332590714009588320 x^{60} y^{21} v_1^2+907065589629895800 x^{59} y^{22} v_1^2+2326820430501918000 x^{58} y^{23} v_1^2+5623149377410150950 x^{57} y^{24} v_1^2+12820780583009228232 x^{56} y^{25} v_1^2+27613988949567004848 x^{55} y^{26} v_1^2+56250718231458970240 x^{54} y^{27} v_1^2+108483528018243486280 x^{53} y^{28} v_1^2+198262999481810056080 x^{52} y^{29} v_1^2+343655865768547823920 x^{51} y^{30} v_1^2+565369327554735054208 x^{50} y^{31} v_1^2+883389574304282067165 x^{49} y^{32} v_1^2+1311699670936663581690 x^{48} y^{33} v_1^2+1851811300145878546020 x^{47} y^{34} v_1^2+2486718031624465585752 x^{46} y^{35} v_1^2+3177473040409039377850 x^{45} y^{36} v_1^2+3864494238335318164720 x^{44} y^{37} v_1^2+4474677539125105243620 x^{43} y^{38} v_1^2+4933618825189218601960 x^{42} y^{39} v_1^2+5180299766448679532059 x^{41} y^{40} v_1^2+5180299766448679532059 x^{40} y^{41} v_1^2+4933618825189218601960 x^{39} y^{42} v_1^2+4474677539125105243620 x^{38} y^{43} v_1^2+3864494238335318164720 x^{37} y^{44} v_1^2+3177473040409039377850 x^{36} y^{45} v_1^2+2486718031624465585752 x^{35} y^{46} v_1^2+1851811300145878546020 x^{34} y^{47} v_1^2+1311699670936663581690 x^{33} y^{48} v_1^2+883389574304282067165 x^{32} y^{49} v_1^2+565369327554735054208 x^{31} y^{50} v_1^2+343655865768547823920 x^{30} y^{51} v_1^2+198262999481810056080 x^{29} y^{52} v_1^2+108483528018243486280 x^{28} y^{53} v_1^2+56250718231458970240 x^{27} y^{54} v_1^2+27613988949567004848 x^{26} y^{55} v_1^2+12820780583009228232 x^{25} y^{56} v_1^2+5623149377410150950 x^{24} y^{57} v_1^2+2326820430501918000 x^{23} y^{58} v_1^2+907065589629895800 x^{22} y^{59} v_1^2+332590714009588320 x^{21} y^{60} v_1^2+114498440268111900 x^{20} y^{61} v_1^2+36934978614190800 x^{19} y^{62} v_1^2+11139118734751800 x^{18} y^{63} v_1^2+3132875757705525 x^{17} y^{64} v_1^2+819366538906035 x^{16} y^{65} v_1^2+198633702987144 x^{15} y^{66} v_1^2+44469885639960 x^{14} y^{67} v_1^2+9155387731420 x^{13} y^{68} v_1^2+1724847154420 x^{12} y^{69} v_1^2+295655057880 x^{11} y^{70} v_1^2+45793774312 x^{10} y^{71} v_1^2+6356448670 x^9 y^{72} v_1^2+782618265 x^8 y^{73} v_1^2+84355440 x^7 y^{74} v_1^2+7821996 x^6 y^{75} v_1^2+608868 x^5 y^{76} v_1^2+38350 x^4 y^{77} v_1^2+1840 x^3 y^{78} v_1^2+60 x^2 y^{79} v_1^2+x y^{80} v_1^2\right) d^{81}+\left(-x^{120} y v_1^3-120 x^{119} y^2 v_1^3-6600 x^{118} y^3 v_1^3-233050 x^{117} y^4 v_1^3-6062238 x^{116} y^5 v_1^3-125025264 x^{115} y^6 v_1^3-2138341920 x^{114} y^7 v_1^3-31253990625 x^{113} y^8 v_1^3-398767664295 x^{112} y^9 v_1^3-4511991614416 x^{111} y^{10} v_1^3-45825752257896 x^{110} y^{11} v_1^3-421794242851800 x^{109} y^{12} v_1^3-3545737885488820 x^{108} y^{13} v_1^3-27397305002268000 x^{107} y^{14} v_1^3-195632742719165544 x^{106} y^{15} v_1^3-1296886287053377764 x^{105} y^{16} v_1^3-8013312884028568185 x^{104} y^{17} v_1^3-46310280226455367980 x^{103} y^{18} v_1^3-251087401469398554060 x^{102} y^{19} v_1^3-1280660245934200737606 x^{101} y^{20} v_1^3-6159698535445165516806 x^{100} y^{21} v_1^3-27999536772158564063100 x^{99} y^{22} v_1^3-120522072057113016798300 x^{98} y^{23} v_1^3-492137417382588895410675 x^{97} y^{24} v_1^3-1909506000225027923421651 x^{96} y^{25} v_1^3-7050511307127514207330944 x^{95} y^{26} v_1^3-24807410849870596262542080 x^{94} y^{27} v_1^3-83282130622379305696306120 x^{93} y^{28} v_1^3-267077375776146910422348120 x^{92} y^{29} v_1^3-819037629369382960509691488 x^{91} y^{30} v_1^3-2404272316098806567844148576 x^{90} y^{31} v_1^3-6762016772417467776343735035 x^{89} y^{32} v_1^3-18236955637310417363772442845 x^{88} y^{33} v_1^3-47201534089555909793289574560 x^{87} y^{34} v_1^3-117329530080757007396356813944 x^{86} y^{35} v_1^3-280287213925948113633669544494 x^{85} y^{36} v_1^3-643903062883564229115369820990 x^{84} y^{37} v_1^3-1423364669796240571906449058440 x^{83} y^{38} v_1^3-3029211994499976965400379418640 x^{82} y^{39} v_1^3-6209884593905252545519457340271 x^{81} y^{40} v_1^3-12268308593139457234426144033570 x^{80} y^{41} v_1^3-23368206849008775462191397713520 x^{79} y^{42} v_1^3-42932287006141962690593021973000 x^{78} y^{43} v_1^3-76107236060207064462568402568140 x^{77} y^{44} v_1^3-130227937261754005565248305928824 x^{76} y^{45} v_1^3-215159200695819422878556448288288 x^{75} y^{46} v_1^3-343339150048372166957416794183720 x^{74} y^{47} v_1^3-529314522992552123730287424566955 x^{73} y^{48} v_1^3-788570615887746757580649687419295 x^{72} y^{49} v_1^3-1135541686878920700243681131651908 x^{71} y^{50} v_1^3-1580852152321978356204947155457436 x^{70} y^{51} v_1^3-2128070205049015280967281906747790 x^{69} y^{52} v_1^3-2770506493365807622898271773900290 x^{68} y^{53} v_1^3-3488785954608851035097118760071780 x^{67} y^{54} v_1^3-4249975617432627965780358195858156 x^{66} y^{55} v_1^3-5008899834831324351644758304397639 x^{65} y^{56} v_1^3-5711903320421691286371315388343130 x^{64} y^{57} v_1^3-6302789870810144432462846646069840 x^{63} y^{58} v_1^3-6730097658661680543394316043676080 x^{62} y^{59} v_1^3-6954434247283736855932029353389776 x^{61} y^{60} v_1^3-6954434247283736855932029353389776 x^{60} y^{61} v_1^3-6730097658661680543394316043676080 x^{59} y^{62} v_1^3-6302789870810144432462846646069840 x^{58} y^{63} v_1^3-5711903320421691286371315388343130 x^{57} y^{64} v_1^3-5008899834831324351644758304397639 x^{56} y^{65} v_1^3-4249975617432627965780358195858156 x^{55} y^{66} v_1^3-3488785954608851035097118760071780 x^{54} y^{67} v_1^3-2770506493365807622898271773900290 x^{53} y^{68} v_1^3-2128070205049015280967281906747790 x^{52} y^{69} v_1^3-1580852152321978356204947155457436 x^{51} y^{70} v_1^3-1135541686878920700243681131651908 x^{50} y^{71} v_1^3-788570615887746757580649687419295 x^{49} y^{72} v_1^3-529314522992552123730287424566955 x^{48} y^{73} v_1^3-343339150048372166957416794183720 x^{47} y^{74} v_1^3-215159200695819422878556448288288 x^{46} y^{75} v_1^3-130227937261754005565248305928824 x^{45} y^{76} v_1^3-76107236060207064462568402568140 x^{44} y^{77} v_1^3-42932287006141962690593021973000 x^{43} y^{78} v_1^3-23368206849008775462191397713520 x^{42} y^{79} v_1^3-12268308593139457234426144033570 x^{41} y^{80} v_1^3-6209884593905252545519457340271 x^{40} y^{81} v_1^3-3029211994499976965400379418640 x^{39} y^{82} v_1^3-1423364669796240571906449058440 x^{38} y^{83} v_1^3-643903062883564229115369820990 x^{37} y^{84} v_1^3-280287213925948113633669544494 x^{36} y^{85} v_1^3-117329530080757007396356813944 x^{35} y^{86} v_1^3-47201534089555909793289574560 x^{34} y^{87} v_1^3-18236955637310417363772442845 x^{33} y^{88} v_1^3-6762016772417467776343735035 x^{32} y^{89} v_1^3-2404272316098806567844148576 x^{31} y^{90} v_1^3-819037629369382960509691488 x^{30} y^{91} v_1^3-267077375776146910422348120 x^{29} y^{92} v_1^3-83282130622379305696306120 x^{28} y^{93} v_1^3-24807410849870596262542080 x^{27} y^{94} v_1^3-7050511307127514207330944 x^{26} y^{95} v_1^3-1909506000225027923421651 x^{25} y^{96} v_1^3-492137417382588895410675 x^{24} y^{97} v_1^3-120522072057113016798300 x^{23} y^{98} v_1^3-27999536772158564063100 x^{22} y^{99} v_1^3-6159698535445165516806 x^{21} y^{100} v_1^3-1280660245934200737606 x^{20} y^{101} v_1^3-251087401469398554060 x^{19} y^{102} v_1^3-46310280226455367980 x^{18} y^{103} v_1^3-8013312884028568185 x^{17} y^{104} v_1^3-1296886287053377764 x^{16} y^{105} v_1^3-195632742719165544 x^{15} y^{106} v_1^3-27397305002268000 x^{14} y^{107} v_1^3-3545737885488820 x^{13} y^{108} v_1^3-421794242851800 x^{12} y^{109} v_1^3-45825752257896 x^{11} y^{110} v_1^3-4511991614416 x^{10} y^{111} v_1^3-398767664295 x^9 y^{112} v_1^3-31253990625 x^8 y^{113} v_1^3-2138341920 x^7 y^{114} v_1^3-125025264 x^6 y^{115} v_1^3-6062238 x^5 y^{116} v_1^3-233050 x^4 y^{117} v_1^3-6600 x^3 y^{118} v_1^3-120 x^2 y^{119} v_1^3-x y^{120} v_1^3\right) d^{121}+\left(x^{160} y v_1^4+200 x^{159} y^2 v_1^4+17200 x^{158} y^3 v_1^4+912450 x^{157} y^4 v_1^4+34713168 x^{156} y^5 v_1^4+1027567632 x^{155} y^6 v_1^4+24891625200 x^{154} y^7 v_1^4+510417775725 x^{153} y^8 v_1^4+9075869851620 x^{152} y^9 v_1^4+142465213359040 x^{151} y^{10} v_1^4+2001484590186536 x^{150} y^{11} v_1^4+25440351620183500 x^{149} y^{12} v_1^4+295131306455284320 x^{148} y^{13} v_1^4+3147356830386702240 x^{147} y^{14} v_1^4+31039729680508847496 x^{146} y^{15} v_1^4+284534419621696611165 x^{145} y^{16} v_1^4+2434924539069087898710 x^{144} y^{17} v_1^4+19525706592779158557660 x^{143} y^{18} v_1^4+147207721231333591909080 x^{142} y^{19} v_1^4+1046455480988402703292074 x^{141} y^{20} v_1^4+7032360785171863316192160 x^{140} y^{21} v_1^4+44779386351502197848922300 x^{139} y^{22} v_1^4+270743770022439960886372200 x^{138} y^{23} v_1^4+1557268815046412363992050825 x^{137} y^{24} v_1^4+8535742612454564782599860172 x^{136} y^{25} v_1^4+44655550330300235607806599536 x^{135} y^{26} v_1^4+223302559062351048635295539760 x^{134} y^{27} v_1^4+1068745529071873826346039246400 x^{133} y^{28} v_1^4+4901755193464025074635360960920 x^{132} y^{29} v_1^4+21568541888871079711356097919536 x^{131} y^{30} v_1^4+91146887738190661457782322453712 x^{130} y^{31} v_1^4+370290993453171979640017028703240 x^{129} y^{32} v_1^4+1447519393181673230828339430100965 x^{128} y^{33} v_1^4+5449531975865094660204718202895840 x^{127} y^{34} v_1^4+19774133356240567095464516693035992 x^{126} y^{35} v_1^4+69209747034055910782239442095170466 x^{125} y^{36} v_1^4+233817356855954474044767771096748240 x^{124} y^{37} v_1^4+762984377315679132597182527922657960 x^{123} y^{38} v_1^4+2406338373053751764321925680750878360 x^{122} y^{39} v_1^4+7339338247698536786434418845747519269 x^{121} y^{40} v_1^4+21660010511516469996983202239203785559 x^{120} y^{41} v_1^4+61885767686825334714441754303408529400 x^{119} y^{42} v_1^4+171265306995826885933092196688501391240 x^{118} y^{43} v_1^4+459302490323317254300357171869383554220 x^{117} y^{44} v_1^4+1194186605068562122934934212108702563866 x^{116} y^{45} v_1^4+3011427306201661701481430891700117727176 x^{115} y^{46} v_1^4+7368386305321939317954391479661457177760 x^{114} y^{47} v_1^4+17499918004454128872693803494478306802075 x^{113} y^{48} v_1^4+40356954553944423288040630945394931657945 x^{112} y^{49} v_1^4+90399579336377195044131713560472538997684 x^{111} y^{50} v_1^4+196752027195320165065088556297331876232784 x^{110} y^{51} v_1^4+416206213502785938840548765345467938233130 x^{109} y^{52} v_1^4+855971272049820971358634328118657298363780 x^{108} y^{53} v_1^4+1711942547588427897326119684242957585821700 x^{107} y^{54} v_1^4+3330506415012917163139806207280082312953536 x^{106} y^{55} v_1^4+6304172861997635893631671445120079678353481 x^{105} y^{56} v_1^4+11612950014654916808690557348907249171193135 x^{104} y^{57} v_1^4+20823220722235744148462163930769984143190440 x^{103} y^{58} v_1^4+36352402284531481511061648592723893024111900 x^{102} y^{59} v_1^4+61799083890657952816088112614980149516838104 x^{101} y^{60} v_1^4+102323073334109405303427507797377205532506994 x^{100} y^{61} v_1^4+165037215061745267502889661347977800506563480 x^{99} y^{62} v_1^4+259344195103331067375307041564357426841427580 x^{98} y^{63} v_1^4+397120798757687600238676049258956170932306715 x^{97} y^{64} v_1^4+592626422766481164805659623561377642267150191 x^{96} y^{65} v_1^4+862002069482768033513796435327456888150372396 x^{95} y^{66} v_1^4+1222241740314876296150741131362429813156921600 x^{94} y^{67} v_1^4+1689569464555687739373333009507906601010248450 x^{93} y^{68} v_1^4+2277245800055446327509030634648417114721191800 x^{92} y^{69} v_1^4+2992951622931596025098889118588331501376794844 x^{91} y^{70} v_1^4+3836036587138814953087815336459741106750051984 x^{90} y^{71} v_1^4+4795045733924307258970316522208748823319798555 x^{89} y^{72} v_1^4+5846014661908246375434481288170634577573466315 x^{88} y^{73} v_1^4+6952017435783122790952511308325053562935941360 x^{87} y^{74} v_1^4+8064340225508637541951829393195085329238073776 x^{86} y^{75} v_1^4+9125437623602009418957232028606548172355775476 x^{85} y^{76} v_1^4+10073535039041255026547119151557539656562693250 x^{84} y^{77} v_1^4+10848422349736778421288297507493948098921989280 x^{83} y^{78} v_1^4+11397709557318409328050660401611287811337628200 x^{82} y^{79} v_1^4+11682652296251378724618225688632414897376198369 x^{81} y^{80} v_1^4+11682652296251378724618225688632414897376198369 x^{80} y^{81} v_1^4+11397709557318409328050660401611287811337628200 x^{79} y^{82} v_1^4+10848422349736778421288297507493948098921989280 x^{78} y^{83} v_1^4+10073535039041255026547119151557539656562693250 x^{77} y^{84} v_1^4+9125437623602009418957232028606548172355775476 x^{76} y^{85} v_1^4+8064340225508637541951829393195085329238073776 x^{75} y^{86} v_1^4+6952017435783122790952511308325053562935941360 x^{74} y^{87} v_1^4+5846014661908246375434481288170634577573466315 x^{73} y^{88} v_1^4+4795045733924307258970316522208748823319798555 x^{72} y^{89} v_1^4+3836036587138814953087815336459741106750051984 x^{71} y^{90} v_1^4+2992951622931596025098889118588331501376794844 x^{70} y^{91} v_1^4+2277245800055446327509030634648417114721191800 x^{69} y^{92} v_1^4+1689569464555687739373333009507906601010248450 x^{68} y^{93} v_1^4+1222241740314876296150741131362429813156921600 x^{67} y^{94} v_1^4+862002069482768033513796435327456888150372396 x^{66} y^{95} v_1^4+592626422766481164805659623561377642267150191 x^{65} y^{96} v_1^4+397120798757687600238676049258956170932306715 x^{64} y^{97} v_1^4+259344195103331067375307041564357426841427580 x^{63} y^{98} v_1^4+165037215061745267502889661347977800506563480 x^{62} y^{99} v_1^4+102323073334109405303427507797377205532506994 x^{61} y^{100} v_1^4+61799083890657952816088112614980149516838104 x^{60} y^{101} v_1^4+36352402284531481511061648592723893024111900 x^{59} y^{102} v_1^4+20823220722235744148462163930769984143190440 x^{58} y^{103} v_1^4+11612950014654916808690557348907249171193135 x^{57} y^{104} v_1^4+6304172861997635893631671445120079678353481 x^{56} y^{105} v_1^4+3330506415012917163139806207280082312953536 x^{55} y^{106} v_1^4+1711942547588427897326119684242957585821700 x^{54} y^{107} v_1^4+855971272049820971358634328118657298363780 x^{53} y^{108} v_1^4+416206213502785938840548765345467938233130 x^{52} y^{109} v_1^4+196752027195320165065088556297331876232784 x^{51} y^{110} v_1^4+90399579336377195044131713560472538997684 x^{50} y^{111} v_1^4+40356954553944423288040630945394931657945 x^{49} y^{112} v_1^4+17499918004454128872693803494478306802075 x^{48} y^{113} v_1^4+7368386305321939317954391479661457177760 x^{47} y^{114} v_1^4+3011427306201661701481430891700117727176 x^{46} y^{115} v_1^4+1194186605068562122934934212108702563866 x^{45} y^{116} v_1^4+459302490323317254300357171869383554220 x^{44} y^{117} v_1^4+171265306995826885933092196688501391240 x^{43} y^{118} v_1^4+61885767686825334714441754303408529400 x^{42} y^{119} v_1^4+21660010511516469996983202239203785559 x^{41} y^{120} v_1^4+7339338247698536786434418845747519269 x^{40} y^{121} v_1^4+2406338373053751764321925680750878360 x^{39} y^{122} v_1^4+762984377315679132597182527922657960 x^{38} y^{123} v_1^4+233817356855954474044767771096748240 x^{37} y^{124} v_1^4+69209747034055910782239442095170466 x^{36} y^{125} v_1^4+19774133356240567095464516693035992 x^{35} y^{126} v_1^4+5449531975865094660204718202895840 x^{34} y^{127} v_1^4+1447519393181673230828339430100965 x^{33} y^{128} v_1^4+370290993453171979640017028703240 x^{32} y^{129} v_1^4+91146887738190661457782322453712 x^{31} y^{130} v_1^4+21568541888871079711356097919536 x^{30} y^{131} v_1^4+4901755193464025074635360960920 x^{29} y^{132} v_1^4+1068745529071873826346039246400 x^{28} y^{133} v_1^4+223302559062351048635295539760 x^{27} y^{134} v_1^4+44655550330300235607806599536 x^{26} y^{135} v_1^4+8535742612454564782599860172 x^{25} y^{136} v_1^4+1557268815046412363992050825 x^{24} y^{137} v_1^4+270743770022439960886372200 x^{23} y^{138} v_1^4+44779386351502197848922300 x^{22} y^{139} v_1^4+7032360785171863316192160 x^{21} y^{140} v_1^4+1046455480988402703292074 x^{20} y^{141} v_1^4+147207721231333591909080 x^{19} y^{142} v_1^4+19525706592779158557660 x^{18} y^{143} v_1^4+2434924539069087898710 x^{17} y^{144} v_1^4+284534419621696611165 x^{16} y^{145} v_1^4+31039729680508847496 x^{15} y^{146} v_1^4+3147356830386702240 x^{14} y^{147} v_1^4+295131306455284320 x^{13} y^{148} v_1^4+25440351620183500 x^{12} y^{149} v_1^4+2001484590186536 x^{11} y^{150} v_1^4+142465213359040 x^{10} y^{151} v_1^4+9075869851620 x^9 y^{152} v_1^4+510417775725 x^8 y^{153} v_1^4+24891625200 x^7 y^{154} v_1^4+1027567632 x^6 y^{155} v_1^4+34713168 x^5 y^{156} v_1^4+912450 x^4 y^{157} v_1^4+17200 x^3 y^{158} v_1^4+200 x^2 y^{159} v_1^4+x y^{160} v_1^4\right) d^{161}+O[d]^{162}$
$(x+y) d+\left(-x^{42} y v_1-21 x^{41} y^2 v_1-287 x^{40} y^3 v_1-2870 x^{39} y^4 v_1-22386 x^{38} y^5 v_1-141778 x^{37} y^6 v_1-749398 x^{36} y^7 v_1-3372291 x^{35} y^8 v_1-13114465 x^{34} y^9 v_1-44589181 x^{33} y^{10} v_1-133767543 x^{32} y^{11} v_1-356713448 x^{31} y^{12} v_1-850624376 x^{30} y^{13} v_1-1822766520 x^{29} y^{14} v_1-3524015272 x^{28} y^{15} v_1-6167026726 x^{27} y^{16} v_1-9794689506 x^{26} y^{17} v_1-14147884842 x^{25} y^{18} v_1-18615637950 x^{24} y^{19} v_1-22338765540 x^{23} y^{20} v_1-24466267020 x^{22} y^{21} v_1-24466267020 x^{21} y^{22} v_1-22338765540 x^{20} y^{23} v_1-18615637950 x^{19} y^{24} v_1-14147884842 x^{18} y^{25} v_1-9794689506 x^{17} y^{26} v_1-6167026726 x^{16} y^{27} v_1-3524015272 x^{15} y^{28} v_1-1822766520 x^{14} y^{29} v_1-850624376 x^{13} y^{30} v_1-356713448 x^{12} y^{31} v_1-133767543 x^{11} y^{32} v_1-44589181 x^{10} y^{33} v_1-13114465 x^9 y^{34} v_1-3372291 x^8 y^{35} v_1-749398 x^7 y^{36} v_1-141778 x^6 y^{37} v_1-22386 x^5 y^{38} v_1-2870 x^4 y^{39} v_1-287 x^3 y^{40} v_1-21 x^2 y^{41} v_1-x y^{42} v_1\right) d^{43}+\left(x^{84} y v_1^2+63 x^{83} y^2 v_1^2+2030 x^{82} y^3 v_1^2+44485 x^{81} y^4 v_1^2+743043 x^{80} y^5 v_1^2+10049018 x^{79} y^6 v_1^2+114159744 x^{78} y^7 v_1^2+1116429795 x^{77} y^8 v_1^2+9564791600 x^{76} y^9 v_1^2+72737005341 x^{75} y^{10} v_1^2+496067894868 x^{74} y^{11} v_1^2+3059442065134 x^{73} y^{12} v_1^2+17180794528590 x^{72} y^{13} v_1^2+88360194627840 x^{71} y^{14} v_1^2+418241778587048 x^{70} y^{15} v_1^2+1829813948345061 x^{69} y^{16} v_1^2+7426901702678283 x^{68} y^{17} v_1^2+28057198358002800 x^{67} y^{18} v_1^2+98938560193858350 x^{66} y^{19} v_1^2+326497270978498095 x^{65} y^{20} v_1^2+1010586815590189695 x^{64} y^{21} v_1^2+2939888942546818860 x^{63} y^{22} v_1^2+8052739299749617200 x^{62} y^{23} v_1^2+20802909876302149050 x^{61} y^{24} v_1^2+50759100112325128524 x^{60} y^{25} v_1^2+117136384884391139946 x^{59} y^{26} v_1^2+255964692901688406608 x^{58} y^{27} v_1^2+530212578157021428960 x^{57} y^{28} v_1^2+1042141963965623506200 x^{56} y^{29} v_1^2+1945331666070014502616 x^{55} y^{30} v_1^2+3451394891414898572928 x^{54} y^{31} v_1^2+5824228879262775109359 x^{53} y^{32} v_1^2+9354064563664501583000 x^{52} y^{33} v_1^2+14306216391486897888465 x^{51} y^{34} v_1^2+20846201027595197438340 x^{50} y^{35} v_1^2+28953056982771108302648 x^{49} y^{36} v_1^2+38343237625832008434474 x^{48} y^{37} v_1^2+48433563316840431729090 x^{47} y^{38} v_1^2+58368653227987186958440 x^{46} y^{39} v_1^2+67123951212185265002493 x^{45} y^{40} v_1^2+73672629379227729880806 x^{44} y^{41} v_1^2+77180849825857621779893 x^{43} y^{42} v_1^2+77180849825857621779893 x^{42} y^{43} v_1^2+73672629379227729880806 x^{41} y^{44} v_1^2+67123951212185265002493 x^{40} y^{45} v_1^2+58368653227987186958440 x^{39} y^{46} v_1^2+48433563316840431729090 x^{38} y^{47} v_1^2+38343237625832008434474 x^{37} y^{48} v_1^2+28953056982771108302648 x^{36} y^{49} v_1^2+20846201027595197438340 x^{35} y^{50} v_1^2+14306216391486897888465 x^{34} y^{51} v_1^2+9354064563664501583000 x^{33} y^{52} v_1^2+5824228879262775109359 x^{32} y^{53} v_1^2+3451394891414898572928 x^{31} y^{54} v_1^2+1945331666070014502616 x^{30} y^{55} v_1^2+1042141963965623506200 x^{29} y^{56} v_1^2+530212578157021428960 x^{28} y^{57} v_1^2+255964692901688406608 x^{27} y^{58} v_1^2+117136384884391139946 x^{26} y^{59} v_1^2+50759100112325128524 x^{25} y^{60} v_1^2+20802909876302149050 x^{24} y^{61} v_1^2+8052739299749617200 x^{23} y^{62} v_1^2+2939888942546818860 x^{22} y^{63} v_1^2+1010586815590189695 x^{21} y^{64} v_1^2+326497270978498095 x^{20} y^{65} v_1^2+98938560193858350 x^{19} y^{66} v_1^2+28057198358002800 x^{18} y^{67} v_1^2+7426901702678283 x^{17} y^{68} v_1^2+1829813948345061 x^{16} y^{69} v_1^2+418241778587048 x^{15} y^{70} v_1^2+88360194627840 x^{14} y^{71} v_1^2+17180794528590 x^{13} y^{72} v_1^2+3059442065134 x^{12} y^{73} v_1^2+496067894868 x^{11} y^{74} v_1^2+72737005341 x^{10} y^{75} v_1^2+9564791600 x^9 y^{76} v_1^2+1116429795 x^8 y^{77} v_1^2+114159744 x^7 y^{78} v_1^2+10049018 x^6 y^{79} v_1^2+743043 x^5 y^{80} v_1^2+44485 x^4 y^{81} v_1^2+2030 x^3 y^{82} v_1^2+63 x^2 y^{83} v_1^2+x y^{84} v_1^2\right) d^{85}+\left(-x^{126} y v_1^3-126 x^{125} y^2 v_1^3-7280 x^{124} y^3 v_1^3-270165 x^{123} y^4 v_1^3-7389102 x^{122} y^5 v_1^3-160294092 x^{121} y^6 v_1^3-2884957620 x^{120} y^7 v_1^3-44390794095 x^{119} y^8 v_1^3-596509735745 x^{118} y^9 v_1^3-7111551887132 x^{117} y^{10} v_1^3-76137119785272 x^{116} y^{11} v_1^3-739051599989430 x^{115} y^{12} v_1^3-6554944948281240 x^{114} y^{13} v_1^3-53464340487775080 x^{113} y^{14} v_1^3-403182940119825984 x^{112} y^{15} v_1^3-2824110394787126949 x^{111} y^{16} v_1^3-18447206538253918950 x^{110} y^{17} v_1^3-112760986043243063050 x^{109} y^{18} v_1^3-646990911124061956900 x^{108} y^{19} v_1^3-3494077417340913065355 x^{107} y^{20} v_1^3-17804166951362147236980 x^{106} y^{21} v_1^3-85786653381869256233400 x^{105} y^{22} v_1^3-391642774700007223726200 x^{104} y^{23} v_1^3-1697139493276574271629250 x^{103} y^{24} v_1^3-6992265471399598324241034 x^{102} y^{25} v_1^3-27431312447260231663162464 x^{101} y^{26} v_1^3-102613684008147842354310640 x^{100} y^{27} v_1^3-366477973098820451143966960 x^{99} y^{28} v_1^3-1251081019272419988494289960 x^{98} y^{29} v_1^3-4086866608288238032429183152 x^{97} y^{30} v_1^3-12787940903135507193789887952 x^{96} y^{31} v_1^3-38363828533635400844144773215 x^{95} y^{32} v_1^3-110441333920590717609766839225 x^{94} y^{33} v_1^3-305337819851378963702135620440 x^{93} y^{34} v_1^3-811326227879865131146586372652 x^{92} y^{35} v_1^3-2073389277979378984590162366092 x^{91} y^{36} v_1^3-5099416911211439993337542902430 x^{90} y^{37} v_1^3-12077566417092236985271454392740 x^{89} y^{38} v_1^3-27561625984553501732837429034180 x^{88} y^{39} v_1^3-60635577233141655024427608877689 x^{87} y^{40} v_1^3-128665737129363458333500948718829 x^{86} y^{41} v_1^3-263458414199210788318264326299400 x^{85} y^{42} v_1^3-520789888610504501152659197022893 x^{84} y^{43} v_1^3-994235241966453949761577106015418 x^{83} y^{44} v_1^3-1833811668583027902994649704986370 x^{82} y^{45} v_1^3-3268968626662896654218449704539220 x^{81} y^{46} v_1^3-5633754441744063967395445241602995 x^{80} y^{47} v_1^3-9389590736278449849951574076534394 x^{79} y^{48} v_1^3-15138319758518698733435308888962744 x^{78} y^{49} v_1^3-23615778823310016225186676886131020 x^{77} y^{50} v_1^3-35655195478345115026967448354104040 x^{76} y^{51} v_1^3-52111439545282983719362228885962720 x^{75} y^{52} v_1^3-73742603130123254020429483740615084 x^{74} y^{53} v_1^3-101054678363505688385849657264893224 x^{73} y^{54} v_1^3-134127118555200404461971554397528990 x^{72} y^{55} v_1^3-172449152428115847878762445970221000 x^{71} y^{56} v_1^3-214805084603443077570224825268220440 x^{70} y^{57} v_1^3-259247515900707418548942226589688288 x^{69} y^{58} v_1^3-303187772833030826962668892395422703 x^{68} y^{59} v_1^3-343612809210768321308374368443572200 x^{67} y^{60} v_1^3-377410790444614406471454964756790850 x^{66} y^{61} v_1^3-401759873699105666449289020735964700 x^{65} y^{62} v_1^3-414514155403839182272928049439443135 x^{64} y^{63} v_1^3-414514155403839182272928049439443135 x^{63} y^{64} v_1^3-401759873699105666449289020735964700 x^{62} y^{65} v_1^3-377410790444614406471454964756790850 x^{61} y^{66} v_1^3-343612809210768321308374368443572200 x^{60} y^{67} v_1^3-303187772833030826962668892395422703 x^{59} y^{68} v_1^3-259247515900707418548942226589688288 x^{58} y^{69} v_1^3-214805084603443077570224825268220440 x^{57} y^{70} v_1^3-172449152428115847878762445970221000 x^{56} y^{71} v_1^3-134127118555200404461971554397528990 x^{55} y^{72} v_1^3-101054678363505688385849657264893224 x^{54} y^{73} v_1^3-73742603130123254020429483740615084 x^{53} y^{74} v_1^3-52111439545282983719362228885962720 x^{52} y^{75} v_1^3-35655195478345115026967448354104040 x^{51} y^{76} v_1^3-23615778823310016225186676886131020 x^{50} y^{77} v_1^3-15138319758518698733435308888962744 x^{49} y^{78} v_1^3-9389590736278449849951574076534394 x^{48} y^{79} v_1^3-5633754441744063967395445241602995 x^{47} y^{80} v_1^3-3268968626662896654218449704539220 x^{46} y^{81} v_1^3-1833811668583027902994649704986370 x^{45} y^{82} v_1^3-994235241966453949761577106015418 x^{44} y^{83} v_1^3-520789888610504501152659197022893 x^{43} y^{84} v_1^3-263458414199210788318264326299400 x^{42} y^{85} v_1^3-128665737129363458333500948718829 x^{41} y^{86} v_1^3-60635577233141655024427608877689 x^{40} y^{87} v_1^3-27561625984553501732837429034180 x^{39} y^{88} v_1^3-12077566417092236985271454392740 x^{38} y^{89} v_1^3-5099416911211439993337542902430 x^{37} y^{90} v_1^3-2073389277979378984590162366092 x^{36} y^{91} v_1^3-811326227879865131146586372652 x^{35} y^{92} v_1^3-305337819851378963702135620440 x^{34} y^{93} v_1^3-110441333920590717609766839225 x^{33} y^{94} v_1^3-38363828533635400844144773215 x^{32} y^{95} v_1^3-12787940903135507193789887952 x^{31} y^{96} v_1^3-4086866608288238032429183152 x^{30} y^{97} v_1^3-1251081019272419988494289960 x^{29} y^{98} v_1^3-366477973098820451143966960 x^{28} y^{99} v_1^3-102613684008147842354310640 x^{27} y^{100} v_1^3-27431312447260231663162464 x^{26} y^{101} v_1^3-6992265471399598324241034 x^{25} y^{102} v_1^3-1697139493276574271629250 x^{24} y^{103} v_1^3-391642774700007223726200 x^{23} y^{104} v_1^3-85786653381869256233400 x^{22} y^{105} v_1^3-17804166951362147236980 x^{21} y^{106} v_1^3-3494077417340913065355 x^{20} y^{107} v_1^3-646990911124061956900 x^{19} y^{108} v_1^3-112760986043243063050 x^{18} y^{109} v_1^3-18447206538253918950 x^{17} y^{110} v_1^3-2824110394787126949 x^{16} y^{111} v_1^3-403182940119825984 x^{15} y^{112} v_1^3-53464340487775080 x^{14} y^{113} v_1^3-6554944948281240 x^{13} y^{114} v_1^3-739051599989430 x^{12} y^{115} v_1^3-76137119785272 x^{11} y^{116} v_1^3-7111551887132 x^{10} y^{117} v_1^3-596509735745 x^9 y^{118} v_1^3-44390794095 x^8 y^{119} v_1^3-2884957620 x^7 y^{120} v_1^3-160294092 x^6 y^{121} v_1^3-7389102 x^5 y^{122} v_1^3-270165 x^4 y^{123} v_1^3-7280 x^3 y^{124} v_1^3-126 x^2 y^{125} v_1^3-x y^{126} v_1^3\right) d^{127}+O[d]^{128}$
$(x+y) d+\left(-x^{46} y v_1-23 x^{45} y^2 v_1-345 x^{44} y^3 v_1-3795 x^{43} y^4 v_1-32637 x^{42} y^5 v_1-228459 x^{41} y^6 v_1-1338117 x^{40} y^7 v_1-6690585 x^{39} y^8 v_1-28992535 x^{38} y^9 v_1-110171633 x^{37} y^{10} v_1-370577311 x^{36} y^{11} v_1-1111731933 x^{35} y^{12} v_1-2993124435 x^{34} y^{13} v_1-7269016485 x^{33} y^{14} v_1-15991836267 x^{32} y^{15} v_1-31983672534 x^{31} y^{16} v_1-58323167562 x^{30} y^{17} v_1-97205279270 x^{29} y^{18} v_1-148365952570 x^{28} y^{19} v_1-207712333598 x^{27} y^{20} v_1-267058714626 x^{26} y^{21} v_1-315614844558 x^{25} y^{22} v_1-343059613650 x^{24} y^{23} v_1-343059613650 x^{23} y^{24} v_1-315614844558 x^{22} y^{25} v_1-267058714626 x^{21} y^{26} v_1-207712333598 x^{20} y^{27} v_1-148365952570 x^{19} y^{28} v_1-97205279270 x^{18} y^{29} v_1-58323167562 x^{17} y^{30} v_1-31983672534 x^{16} y^{31} v_1-15991836267 x^{15} y^{32} v_1-7269016485 x^{14} y^{33} v_1-2993124435 x^{13} y^{34} v_1-1111731933 x^{12} y^{35} v_1-370577311 x^{11} y^{36} v_1-110171633 x^{10} y^{37} v_1-28992535 x^9 y^{38} v_1-6690585 x^8 y^{39} v_1-1338117 x^7 y^{40} v_1-228459 x^6 y^{41} v_1-32637 x^5 y^{42} v_1-3795 x^4 y^{43} v_1-345 x^3 y^{44} v_1-23 x^2 y^{45} v_1-x y^{46} v_1\right) d^{47}+\left(x^{92} y v_1^2+69 x^{91} y^2 v_1^2+2438 x^{90} y^3 v_1^2+58650 x^{89} y^4 v_1^2+1076607 x^{88} y^5 v_1^2+16018695 x^{87} y^6 v_1^2+200427612 x^{86} y^7 v_1^2+2161287414 x^{85} y^8 v_1^2+20441151445 x^{84} y^9 v_1^2+171815843771 x^{83} y^{10} v_1^2+1296799216674 x^{82} y^{11} v_1^2+8862573045872 x^{81} y^{12} v_1^2+55223640564099 x^{80} y^{13} v_1^2+315570929382765 x^{79} y^{14} v_1^2+1662022886585496 x^{78} y^{15} v_1^2+8102393555776827 x^{77} y^{16} v_1^2+36699135016980249 x^{76} y^{17} v_1^2+154952000610306988 x^{75} y^{18} v_1^2+611652782354006470 x^{74} y^{19} v_1^2+2263115502422157537 x^{73} y^{20} v_1^2+7867020823097643207 x^{72} y^{21} v_1^2+25746613918479858690 x^{71} y^{22} v_1^2+79478678091410481780 x^{70} y^{23} v_1^2+231812811443006852175 x^{69} y^{24} v_1^2+639803359898313756561 x^{68} y^{25} v_1^2+1673331864616494693324 x^{67} y^{26} v_1^2+4152342034626421387402 x^{66} y^{27} v_1^2+9787663367482073508589 x^{65} y^{28} v_1^2+21937866168591507970935 x^{64} y^{29} v_1^2+46800781159720206838890 x^{63} y^{30} v_1^2+95111264937527887893504 x^{62} y^{31} v_1^2+184278075816476274629931 x^{61} y^{32} v_1^2+340635231054705837271812 x^{60} y^{33} v_1^2+601120995978895647133515 x^{59} y^{34} v_1^2+1013318250364425202614144 x^{58} y^{35} v_1^2+1632568292253796530344543 x^{57} y^{36} v_1^2+2515037639418010981242956 x^{56} y^{37} v_1^2+3706371258089700422403207 x^{55} y^{38} v_1^2+5226933825511115987002800 x^{54} y^{39} v_1^2+7056360664440006583791897 x^{53} y^{40} v_1^2+9121636956471228023178960 x^{52} y^{41} v_1^2+11293455279440568028730397 x^{51} y^{42} v_1^2+13394563238406255103846824 x^{50} y^{43} v_1^2+15221094589098017163462645 x^{49} y^{44} v_1^2+16574080774795618689103792 x^{48} y^{45} v_1^2+17294692982395428197325697 x^{47} y^{46} v_1^2+17294692982395428197325697 x^{46} y^{47} v_1^2+16574080774795618689103792 x^{45} y^{48} v_1^2+15221094589098017163462645 x^{44} y^{49} v_1^2+13394563238406255103846824 x^{43} y^{50} v_1^2+11293455279440568028730397 x^{42} y^{51} v_1^2+9121636956471228023178960 x^{41} y^{52} v_1^2+7056360664440006583791897 x^{40} y^{53} v_1^2+5226933825511115987002800 x^{39} y^{54} v_1^2+3706371258089700422403207 x^{38} y^{55} v_1^2+2515037639418010981242956 x^{37} y^{56} v_1^2+1632568292253796530344543 x^{36} y^{57} v_1^2+1013318250364425202614144 x^{35} y^{58} v_1^2+601120995978895647133515 x^{34} y^{59} v_1^2+340635231054705837271812 x^{33} y^{60} v_1^2+184278075816476274629931 x^{32} y^{61} v_1^2+95111264937527887893504 x^{31} y^{62} v_1^2+46800781159720206838890 x^{30} y^{63} v_1^2+21937866168591507970935 x^{29} y^{64} v_1^2+9787663367482073508589 x^{28} y^{65} v_1^2+4152342034626421387402 x^{27} y^{66} v_1^2+1673331864616494693324 x^{26} y^{67} v_1^2+639803359898313756561 x^{25} y^{68} v_1^2+231812811443006852175 x^{24} y^{69} v_1^2+79478678091410481780 x^{23} y^{70} v_1^2+25746613918479858690 x^{22} y^{71} v_1^2+7867020823097643207 x^{21} y^{72} v_1^2+2263115502422157537 x^{20} y^{73} v_1^2+611652782354006470 x^{19} y^{74} v_1^2+154952000610306988 x^{18} y^{75} v_1^2+36699135016980249 x^{17} y^{76} v_1^2+8102393555776827 x^{16} y^{77} v_1^2+1662022886585496 x^{15} y^{78} v_1^2+315570929382765 x^{14} y^{79} v_1^2+55223640564099 x^{13} y^{80} v_1^2+8862573045872 x^{12} y^{81} v_1^2+1296799216674 x^{11} y^{82} v_1^2+171815843771 x^{10} y^{83} v_1^2+20441151445 x^9 y^{84} v_1^2+2161287414 x^8 y^{85} v_1^2+200427612 x^7 y^{86} v_1^2+16018695 x^6 y^{87} v_1^2+1076607 x^5 y^{88} v_1^2+58650 x^4 y^{89} v_1^2+2438 x^3 y^{90} v_1^2+69 x^2 y^{91} v_1^2+x y^{92} v_1^2\right) d^{93}+\left(-x^{138} y v_1^3-138 x^{137} y^2 v_1^3-8740 x^{136} y^3 v_1^3-355810 x^{135} y^4 v_1^3-10683477 x^{134} y^5 v_1^3-254616348 x^{133} y^6 v_1^3-5038138224 x^{132} y^7 v_1^3-85290568110 x^{131} y^8 v_1^3-1261892753935 x^{130} y^9 v_1^3-16576421644926 x^{129} y^{10} v_1^3-195693016688988 x^{128} y^{11} v_1^3-2096254751061744 x^{127} y^{12} v_1^3-20534020054782675 x^{126} y^{13} v_1^3-185121751422426840 x^{125} y^{14} v_1^3-1544343284740142496 x^{124} y^{15} v_1^3-11976762850291881171 x^{123} y^{16} v_1^3-86692100934187649898 x^{122} y^{17} v_1^3-587734747221215489630 x^{121} y^{18} v_1^3-3743553990349042124640 x^{120} y^{19} v_1^3-22463587057596674905377 x^{119} y^{20} v_1^3-127301527013870922107010 x^{118} y^{21} v_1^3-682824846051953425705380 x^{117} y^{22} v_1^3-3473579782507593619504800 x^{116} y^{23} v_1^3-16789200761598145501125375 x^{115} y^{24} v_1^3-77230963306711367618933286 x^{114} y^{25} v_1^3-338629743215137536054631578 x^{113} y^{26} v_1^3-1417232336909091721761141784 x^{112} y^{27} v_1^3-5668939135299734369118075725 x^{111} y^{28} v_1^3-21698375179875496693994398710 x^{110} y^{29} v_1^3-79560755793657980931519634160 x^{109} y^{30} v_1^3-279745978385739773706456929744 x^{108} y^{31} v_1^3-944142861329947552735566767817 x^{107} y^{32} v_1^3-3061312042523242816606008306855 x^{106} y^{33} v_1^3-9544091086634635348314378913710 x^{105} y^{34} v_1^3-28632274273222156409368339355274 x^{104} y^{35} v_1^3-82715460644098966325305066259779 x^{103} y^{36} v_1^3-230261960524286113242508868398557 x^{102} y^{37} v_1^3-618071581955770825214329490209860 x^{101} y^{38} v_1^3-1600646922599571090809764153956540 x^{100} y^{39} v_1^3-4001617313555288391464416968683247 x^{99} y^{40} v_1^3-9662441815023430877324332410975093 x^{98} y^{41} v_1^3-22545697579681460659864010321005614 x^{97} y^{42} v_1^3-50858899204769021006006464432626930 x^{96} y^{43} v_1^3-110964871007444413147657575925557765 x^{95} y^{44} v_1^3-234259172143401175197628278976392407 x^{94} y^{45} v_1^3-478703525701636224907983650453431920 x^{93} y^{46} v_1^3-947221870022659989076916268456244177 x^{92} y^{47} v_1^3-1815508584226672393172218466563571796 x^{91} y^{48} v_1^3-3371658799293326967623218026495810138 x^{90} y^{49} v_1^3-6068985838741383104960198702796300684 x^{89} y^{50} v_1^3-10590975287226648285504101049379035123 x^{88} y^{51} v_1^3-17923188947623449504732642234662801064 x^{87} y^{52} v_1^3-29421083744219133849565192354022849748 x^{86} y^{53} v_1^3-46855800037094958620170076716519008424 x^{85} y^{54} v_1^3-72413509148241369693339117349884335677 x^{84} y^{55} v_1^3-108620263722364569577648094005146019304 x^{83} y^{56} v_1^3-158166348929058812830481583413484810670 x^{82} y^{57} v_1^3-223614493313497955595827773624654660828 x^{81} y^{58} v_1^3-306996168786328302871200198314776130319 x^{80} y^{59} v_1^3-409328225048438077796831245494018026772 x^{79} y^{60} v_1^3-530113602931583924375610955229127136104 x^{78} y^{61} v_1^3-666917113365541161261225016077674392656 x^{77} y^{62} v_1^3-815120916335661466120046276445240702681 x^{76} y^{63} v_1^3-967956088148598012955377541647398641323 x^{75} y^{64} v_1^3-1116872409402228486274458663228367740514 x^{74} y^{65} v_1^3-1252250883269165276641200803914376180118 x^{73} y^{66} v_1^3-1364392753412672616518741584826534150763 x^{72} y^{67} v_1^3-1444651150672241594592494074725481823385 x^{71} y^{68} v_1^3-1486525097068538452612089184157458149180 x^{70} y^{69} v_1^3-1486525097068538452612089184157458149180 x^{69} y^{70} v_1^3-1444651150672241594592494074725481823385 x^{68} y^{71} v_1^3-1364392753412672616518741584826534150763 x^{67} y^{72} v_1^3-1252250883269165276641200803914376180118 x^{66} y^{73} v_1^3-1116872409402228486274458663228367740514 x^{65} y^{74} v_1^3-967956088148598012955377541647398641323 x^{64} y^{75} v_1^3-815120916335661466120046276445240702681 x^{63} y^{76} v_1^3-666917113365541161261225016077674392656 x^{62} y^{77} v_1^3-530113602931583924375610955229127136104 x^{61} y^{78} v_1^3-409328225048438077796831245494018026772 x^{60} y^{79} v_1^3-306996168786328302871200198314776130319 x^{59} y^{80} v_1^3-223614493313497955595827773624654660828 x^{58} y^{81} v_1^3-158166348929058812830481583413484810670 x^{57} y^{82} v_1^3-108620263722364569577648094005146019304 x^{56} y^{83} v_1^3-72413509148241369693339117349884335677 x^{55} y^{84} v_1^3-46855800037094958620170076716519008424 x^{54} y^{85} v_1^3-29421083744219133849565192354022849748 x^{53} y^{86} v_1^3-17923188947623449504732642234662801064 x^{52} y^{87} v_1^3-10590975287226648285504101049379035123 x^{51} y^{88} v_1^3-6068985838741383104960198702796300684 x^{50} y^{89} v_1^3-3371658799293326967623218026495810138 x^{49} y^{90} v_1^3-1815508584226672393172218466563571796 x^{48} y^{91} v_1^3-947221870022659989076916268456244177 x^{47} y^{92} v_1^3-478703525701636224907983650453431920 x^{46} y^{93} v_1^3-234259172143401175197628278976392407 x^{45} y^{94} v_1^3-110964871007444413147657575925557765 x^{44} y^{95} v_1^3-50858899204769021006006464432626930 x^{43} y^{96} v_1^3-22545697579681460659864010321005614 x^{42} y^{97} v_1^3-9662441815023430877324332410975093 x^{41} y^{98} v_1^3-4001617313555288391464416968683247 x^{40} y^{99} v_1^3-1600646922599571090809764153956540 x^{39} y^{100} v_1^3-618071581955770825214329490209860 x^{38} y^{101} v_1^3-230261960524286113242508868398557 x^{37} y^{102} v_1^3-82715460644098966325305066259779 x^{36} y^{103} v_1^3-28632274273222156409368339355274 x^{35} y^{104} v_1^3-9544091086634635348314378913710 x^{34} y^{105} v_1^3-3061312042523242816606008306855 x^{33} y^{106} v_1^3-944142861329947552735566767817 x^{32} y^{107} v_1^3-279745978385739773706456929744 x^{31} y^{108} v_1^3-79560755793657980931519634160 x^{30} y^{109} v_1^3-21698375179875496693994398710 x^{29} y^{110} v_1^3-5668939135299734369118075725 x^{28} y^{111} v_1^3-1417232336909091721761141784 x^{27} y^{112} v_1^3-338629743215137536054631578 x^{26} y^{113} v_1^3-77230963306711367618933286 x^{25} y^{114} v_1^3-16789200761598145501125375 x^{24} y^{115} v_1^3-3473579782507593619504800 x^{23} y^{116} v_1^3-682824846051953425705380 x^{22} y^{117} v_1^3-127301527013870922107010 x^{21} y^{118} v_1^3-22463587057596674905377 x^{20} y^{119} v_1^3-3743553990349042124640 x^{19} y^{120} v_1^3-587734747221215489630 x^{18} y^{121} v_1^3-86692100934187649898 x^{17} y^{122} v_1^3-11976762850291881171 x^{16} y^{123} v_1^3-1544343284740142496 x^{15} y^{124} v_1^3-185121751422426840 x^{14} y^{125} v_1^3-20534020054782675 x^{13} y^{126} v_1^3-2096254751061744 x^{12} y^{127} v_1^3-195693016688988 x^{11} y^{128} v_1^3-16576421644926 x^{10} y^{129} v_1^3-1261892753935 x^9 y^{130} v_1^3-85290568110 x^8 y^{131} v_1^3-5038138224 x^7 y^{132} v_1^3-254616348 x^6 y^{133} v_1^3-10683477 x^5 y^{134} v_1^3-355810 x^4 y^{135} v_1^3-8740 x^3 y^{136} v_1^3-138 x^2 y^{137} v_1^3-x y^{138} v_1^3\right) d^{139}+O[d]^{140}$
$(x+y) d+x y v_1 d^2+\left(x^2 y v_1^2+x y^2 v_1^2\right) d^3+\left(x^3 y \left(\frac{6 v_1^3}{7}+\frac{2 v_2}{7}\right)+x y^3 \left(\frac{6 v_1^3}{7}+\frac{2 v_2}{7}\right)+x^2 y^2 \left(\frac{16 v_1^3}{7}+\frac{3 v_2}{7}\right)\right) d^4+\left(x^4 y \left(\frac{5 v_1^4}{7}+\frac{4 v_1 v_2}{7}\right)+x y^4 \left(\frac{5 v_1^4}{7}+\frac{4 v_1 v_2}{7}\right)+x^3 y^2 \left(\frac{26 v_1^4}{7}+\frac{11 v_1 v_2}{7}\right)+x^2 y^3 \left(\frac{26 v_1^4}{7}+\frac{11 v_1 v_2}{7}\right)\right) d^5+\left(x^5 y \left(\frac{4 v_1^5}{7}+\frac{6}{7} v_1^2 v_2\right)+x y^5 \left(\frac{4 v_1^5}{7}+\frac{6}{7} v_1^2 v_2\right)+x^4 y^2 \left(5 v_1^5+4 v_1^2 v_2\right)+x^2 y^4 \left(5 v_1^5+4 v_1^2 v_2\right)+x^3 y^3 \left(\frac{66 v_1^5}{7}+\frac{43}{7} v_1^2 v_2\right)\right) d^6+\left(x^6 y \left(\frac{22 v_1^6}{49}+\frac{52}{49} v_1^3 v_2+\frac{4 v_2^2}{49}\right)+x y^6 \left(\frac{22 v_1^6}{49}+\frac{52}{49} v_1^3 v_2+\frac{4 v_2^2}{49}\right)+x^5 y^2 \left(\frac{295 v_1^6}{49}+\frac{381}{49} v_1^3 v_2+\frac{18 v_2^2}{49}\right)+x^2 y^5 \left(\frac{295 v_1^6}{49}+\frac{381}{49} v_1^3 v_2+\frac{18 v_2^2}{49}\right)+x^4 y^3 \left(\frac{901 v_1^6}{49}+\frac{876}{49} v_1^3 v_2+\frac{34 v_2^2}{49}\right)+x^3 y^4 \left(\frac{901 v_1^6}{49}+\frac{876}{49} v_1^3 v_2+\frac{34 v_2^2}{49}\right)\right) d^7+\left(x^7 y \left(\frac{2166 v_1^7}{6223}+\frac{7352 v_1^4 v_2}{6223}+\frac{1426 v_1 v_2^2}{6223}+\frac{4 v_3}{127}\right)+x y^7 \left(\frac{2166 v_1^7}{6223}+\frac{7352 v_1^4 v_2}{6223}+\frac{1426 v_1 v_2^2}{6223}+\frac{4 v_3}{127}\right)+x^6 y^2 \left(\frac{41744 v_1^7}{6223}+\frac{79326 v_1^4 v_2}{6223}+\frac{10071 v_1 v_2^2}{6223}+\frac{14 v_3}{127}\right)+x^2 y^6 \left(\frac{41744 v_1^7}{6223}+\frac{79326 v_1^4 v_2}{6223}+\frac{10071 v_1 v_2^2}{6223}+\frac{14 v_3}{127}\right)+x^5 y^3 \left(\frac{189025 v_1^7}{6223}+\frac{261903 v_1^4 v_2}{6223}+\frac{26238 v_1 v_2^2}{6223}+\frac{28 v_3}{127}\right)+x^3 y^5 \left(\frac{189025 v_1^7}{6223}+\frac{261903 v_1^4 v_2}{6223}+\frac{26238 v_1 v_2^2}{6223}+\frac{28 v_3}{127}\right)+x^4 y^4 \left(\frac{303242 v_1^7}{6223}+\frac{378909 v_1^4 v_2}{6223}+\frac{35274 v_1 v_2^2}{6223}+\frac{35 v_3}{127}\right)\right) d^8+\left(x^8 y \left(\frac{1665 v_1^8}{6223}+\frac{7592 v_1^5 v_2}{6223}+\frac{2852 v_1^2 v_2^2}{6223}+\frac{8 v_1 v_3}{127}\right)+x y^8 \left(\frac{1665 v_1^8}{6223}+\frac{7592 v_1^5 v_2}{6223}+\frac{2852 v_1^2 v_2^2}{6223}+\frac{8 v_1 v_3}{127}\right)+x^7 y^2 \left(\frac{43959 v_1^8}{6223}+\frac{115028 v_1^5 v_2}{6223}+\frac{28591 v_1^2 v_2^2}{6223}+\frac{46 v_1 v_3}{127}\right)+x^2 y^7 \left(\frac{43959 v_1^8}{6223}+\frac{115028 v_1^5 v_2}{6223}+\frac{28591 v_1^2 v_2^2}{6223}+\frac{46 v_1 v_3}{127}\right)+x^6 y^3 \left(\frac{278160 v_1^8}{6223}+\frac{524450 v_1^5 v_2}{6223}+\frac{100545 v_1^2 v_2^2}{6223}+\frac{126 v_1 v_3}{127}\right)+x^3 y^6 \left(\frac{278160 v_1^8}{6223}+\frac{524450 v_1^5 v_2}{6223}+\frac{100545 v_1^2 v_2^2}{6223}+\frac{126 v_1 v_3}{127}\right)+x^5 y^4 \left(\frac{653421 v_1^8}{6223}+\frac{1051929 v_1^5 v_2}{6223}+\frac{178097 v_1^2 v_2^2}{6223}+\frac{203 v_1 v_3}{127}\right)+x^4 y^5 \left(\frac{653421 v_1^8}{6223}+\frac{1051929 v_1^5 v_2}{6223}+\frac{178097 v_1^2 v_2^2}{6223}+\frac{203 v_1 v_3}{127}\right)\right) d^9+\left(x^9 y \left(\frac{8910 v_1^9}{43561}+\frac{52030 v_1^6 v_2}{43561}+\frac{31978 v_1^3 v_2^2}{43561}+\frac{8 v_2^3}{343}+\frac{12}{127} v_1^2 v_3\right)+x y^9 \left(\frac{8910 v_1^9}{43561}+\frac{52030 v_1^6 v_2}{43561}+\frac{31978 v_1^3 v_2^2}{43561}+\frac{8 v_2^3}{343}+\frac{12}{127} v_1^2 v_3\right)+x^8 y^2 \left(\frac{310392 v_1^9}{43561}+\frac{1065776 v_1^6 v_2}{43561}+\frac{437840 v_1^3 v_2^2}{43561}+\frac{72 v_2^3}{343}+\frac{104}{127} v_1^2 v_3\right)+x^2 y^8 \left(\frac{310392 v_1^9}{43561}+\frac{1065776 v_1^6 v_2}{43561}+\frac{437840 v_1^3 v_2^2}{43561}+\frac{72 v_2^3}{343}+\frac{104}{127} v_1^2 v_3\right)+x^7 y^3 \left(\frac{2629325 v_1^9}{43561}+\frac{6489104 v_1^6 v_2}{43561}+\frac{2036337 v_1^3 v_2^2}{43561}+\frac{260 v_2^3}{343}+\frac{382}{127} v_1^2 v_3\right)+x^3 y^7 \left(\frac{2629325 v_1^9}{43561}+\frac{6489104 v_1^6 v_2}{43561}+\frac{2036337 v_1^3 v_2^2}{43561}+\frac{260 v_2^3}{343}+\frac{382}{127} v_1^2 v_3\right)+x^6 y^4 \left(\frac{8522341 v_1^9}{43561}+\frac{17427944 v_1^6 v_2}{43561}+\frac{4678215 v_1^3 v_2^2}{43561}+\frac{523 v_2^3}{343}+\frac{791}{127} v_1^2 v_3\right)+x^4 y^6 \left(\frac{8522341 v_1^9}{43561}+\frac{17427944 v_1^6 v_2}{43561}+\frac{4678215 v_1^3 v_2^2}{43561}+\frac{523 v_2^3}{343}+\frac{791}{127} v_1^2 v_3\right)+x^5 y^5 \left(\frac{12430100 v_1^9}{43561}+\frac{23899418 v_1^6 v_2}{43561}+\frac{6095207 v_1^3 v_2^2}{43561}+\frac{654 v_2^3}{343}+\frac{1001}{127} v_1^2 v_3\right)\right) d^{10}+\left(x^{10} y \left(\frac{6786 v_1^{10}}{43561}+\frac{48940 v_1^7 v_2}{43561}+\frac{44640 v_1^4 v_2^2}{43561}+\frac{3672 v_1 v_2^3}{43561}+\frac{104}{889} v_1^3 v_3+\frac{16 v_2 v_3}{889}\right)+x y^{10} \left(\frac{6786 v_1^{10}}{43561}+\frac{48940 v_1^7 v_2}{43561}+\frac{44640 v_1^4 v_2^2}{43561}+\frac{3672 v_1 v_2^3}{43561}+\frac{104}{889} v_1^3 v_3+\frac{16 v_2 v_3}{889}\right)+x^9 y^2 \left(\frac{302690 v_1^{10}}{43561}+\frac{1314435 v_1^7 v_2}{43561}+\frac{808011 v_1^4 v_2^2}{43561}+\frac{47352 v_1 v_2^3}{43561}+\frac{1298}{889} v_1^3 v_3+\frac{120 v_2 v_3}{889}\right)+x^2 y^9 \left(\frac{302690 v_1^{10}}{43561}+\frac{1314435 v_1^7 v_2}{43561}+\frac{808011 v_1^4 v_2^2}{43561}+\frac{47352 v_1 v_2^3}{43561}+\frac{1298}{889} v_1^3 v_3+\frac{120 v_2 v_3}{889}\right)+x^8 y^3 \left(\frac{474526 v_1^{10}}{6223}+\frac{1484628 v_1^7 v_2}{6223}+\frac{99212}{889} v_1^4 v_2^2+\frac{32044 v_1 v_2^3}{6223}+\frac{6312}{889} v_1^3 v_3+\frac{424 v_2 v_3}{889}\right)+x^3 y^8 \left(\frac{474526 v_1^{10}}{6223}+\frac{1484628 v_1^7 v_2}{6223}+\frac{99212}{889} v_1^4 v_2^2+\frac{32044 v_1 v_2^3}{6223}+\frac{6312}{889} v_1^3 v_3+\frac{424 v_2 v_3}{889}\right)+x^7 y^4 \left(\frac{14241679 v_1^{10}}{43561}+\frac{36308759 v_1^7 v_2}{43561}+\frac{14247855 v_1^4 v_2^2}{43561}+\frac{567297 v_1 v_2^3}{43561}+\frac{16670}{889} v_1^3 v_3+\frac{918 v_2 v_3}{889}\right)+x^4 y^7 \left(\frac{14241679 v_1^{10}}{43561}+\frac{36308759 v_1^7 v_2}{43561}+\frac{14247855 v_1^4 v_2^2}{43561}+\frac{567297 v_1 v_2^3}{43561}+\frac{16670}{889} v_1^3 v_3+\frac{918 v_2 v_3}{889}\right)+x^6 y^5 \left(\frac{4071629 v_1^{10}}{6223}+\frac{1342190}{889} v_1^7 v_2+\frac{3381473 v_1^4 v_2^2}{6223}+\frac{125647 v_1 v_2^3}{6223}+\frac{3797}{127} v_1^3 v_3+\frac{190 v_2 v_3}{127}\right)+x^5 y^6 \left(\frac{4071629 v_1^{10}}{6223}+\frac{1342190}{889} v_1^7 v_2+\frac{3381473 v_1^4 v_2^2}{6223}+\frac{125647 v_1 v_2^3}{6223}+\frac{3797}{127} v_1^3 v_3+\frac{190 v_2 v_3}{127}\right)\right) d^{11}+\left(x^{11} y \left(\frac{5156 v_1^{11}}{43561}+\frac{44636 v_1^8 v_2}{43561}+\frac{56426 v_1^5 v_2^2}{43561}+\frac{8984 v_1^2 v_2^3}{43561}+\frac{116}{889} v_1^4 v_3+\frac{48}{889} v_1 v_2 v_3\right)+x y^{11} \left(\frac{5156 v_1^{11}}{43561}+\frac{44636 v_1^8 v_2}{43561}+\frac{56426 v_1^5 v_2^2}{43561}+\frac{8984 v_1^2 v_2^3}{43561}+\frac{116}{889} v_1^4 v_3+\frac{48}{889} v_1 v_2 v_3\right)+x^{10} y^2 \left(\frac{287271 v_1^{11}}{43561}+\frac{1532536 v_1^8 v_2}{43561}+\frac{10371}{343} v_1^5 v_2^2+\frac{152868 v_1^2 v_2^3}{43561}+\frac{1994}{889} v_1^4 v_3+\frac{520}{889} v_1 v_2 v_3\right)+x^2 y^{10} \left(\frac{287271 v_1^{11}}{43561}+\frac{1532536 v_1^8 v_2}{43561}+\frac{10371}{343} v_1^5 v_2^2+\frac{152868 v_1^2 v_2^3}{43561}+\frac{1994}{889} v_1^4 v_3+\frac{520}{889} v_1 v_2 v_3\right)+x^9 y^3 \left(\frac{3978654 v_1^{11}}{43561}+\frac{15369299 v_1^8 v_2}{43561}+\frac{10048631 v_1^5 v_2^2}{43561}+\frac{921640 v_1^2 v_2^3}{43561}+\frac{12590}{889} v_1^4 v_3+\frac{2400}{889} v_1 v_2 v_3\right)+x^3 y^9 \left(\frac{3978654 v_1^{11}}{43561}+\frac{15369299 v_1^8 v_2}{43561}+\frac{10048631 v_1^5 v_2^2}{43561}+\frac{921640 v_1^2 v_2^3}{43561}+\frac{12590}{889} v_1^4 v_3+\frac{2400}{889} v_1 v_2 v_3\right)+x^8 y^4 \left(\frac{21859212 v_1^{11}}{43561}+\frac{68187074 v_1^8 v_2}{43561}+\frac{36964465 v_1^5 v_2^2}{43561}+\frac{2890247 v_1^2 v_2^3}{43561}+\frac{41894}{889} v_1^4 v_3+\frac{6470}{889} v_1 v_2 v_3\right)+x^4 y^8 \left(\frac{21859212 v_1^{11}}{43561}+\frac{68187074 v_1^8 v_2}{43561}+\frac{36964465 v_1^5 v_2^2}{43561}+\frac{2890247 v_1^2 v_2^3}{43561}+\frac{41894}{889} v_1^4 v_3+\frac{6470}{889} v_1 v_2 v_3\right)+x^7 y^5 \left(\frac{57510694 v_1^{11}}{43561}+\frac{158500527 v_1^8 v_2}{43561}+\frac{76941264 v_1^5 v_2^2}{43561}+\frac{5492099 v_1^2 v_2^3}{43561}+\frac{83320}{889} v_1^4 v_3+\frac{11384}{889} v_1 v_2 v_3\right)+x^5 y^7 \left(\frac{57510694 v_1^{11}}{43561}+\frac{158500527 v_1^8 v_2}{43561}+\frac{76941264 v_1^5 v_2^2}{43561}+\frac{5492099 v_1^2 v_2^3}{43561}+\frac{83320}{889} v_1^4 v_3+\frac{11384}{889} v_1 v_2 v_3\right)+x^6 y^6 \left(\frac{78755046 v_1^{11}}{43561}+\frac{208387871 v_1^8 v_2}{43561}+\frac{97525934 v_1^5 v_2^2}{43561}+\frac{6759509 v_1^2 v_2^3}{43561}+\frac{14895}{127} v_1^4 v_3+\frac{1955}{127} v_1 v_2 v_3\right)\right) d^{12}+O[d]^{13}$
$(x+y) d+\frac{1}{8} \left(x^2 y v_1+x y^2 v_1\right) d^3+\frac{1}{64} \left(x^4 y v_1^2+3 x^3 y^2 v_1^2+3 x^2 y^3 v_1^2+x y^4 v_1^2\right) d^5+\frac{1}{512} \left(x^6 y v_1^3+6 x^5 y^2 v_1^3+13 x^4 y^3 v_1^3+13 x^3 y^4 v_1^3+6 x^2 y^5 v_1^3+x y^6 v_1^3\right) d^7+\left(x^8 y \left(\frac{189 v_1^4}{839680}+\frac{3 v_2}{6560}\right)+x y^8 \left(\frac{189 v_1^4}{839680}+\frac{3 v_2}{6560}\right)+x^7 y^2 \left(\frac{993 v_1^4}{419840}+\frac{3 v_2}{1640}\right)+x^2 y^7 \left(\frac{993 v_1^4}{419840}+\frac{3 v_2}{1640}\right)+x^6 y^3 \left(\frac{7299 v_1^4}{839680}+\frac{7 v_2}{1640}\right)+x^3 y^6 \left(\frac{7299 v_1^4}{839680}+\frac{7 v_2}{1640}\right)+x^5 y^4 \left(\frac{6653 v_1^4}{419840}+\frac{21 v_2}{3280}\right)+x^4 y^5 \left(\frac{6653 v_1^4}{419840}+\frac{21 v_2}{3280}\right)\right) d^9+\left(x^{10} y \left(\frac{173 v_1^5}{6717440}+\frac{3 v_1 v_2}{26240}\right)+x y^{10} \left(\frac{173 v_1^5}{6717440}+\frac{3 v_1 v_2}{26240}\right)+x^9 y^2 \left(\frac{567 v_1^5}{1343488}+\frac{9 v_1 v_2}{10496}\right)+x^2 y^9 \left(\frac{567 v_1^5}{1343488}+\frac{9 v_1 v_2}{10496}\right)+x^8 y^3 \left(\frac{3951 v_1^5}{1679360}+\frac{163 v_1 v_2}{52480}\right)+x^3 y^8 \left(\frac{3951 v_1^5}{1679360}+\frac{163 v_1 v_2}{52480}\right)+x^7 y^4 \left(\frac{5567 v_1^5}{839680}+\frac{181 v_1 v_2}{26240}\right)+x^4 y^7 \left(\frac{5567 v_1^5}{839680}+\frac{181 v_1 v_2}{26240}\right)+x^6 y^5 \left(\frac{18219 v_1^5}{1679360}+\frac{133 v_1 v_2}{13120}\right)+x^5 y^6 \left(\frac{18219 v_1^5}{1679360}+\frac{133 v_1 v_2}{13120}\right)\right) d^{11}+\left(x^{12} y \left(\frac{157 v_1^6}{53739520}+\frac{9 v_1^2 v_2}{419840}\right)+x y^{12} \left(\frac{157 v_1^6}{53739520}+\frac{9 v_1^2 v_2}{419840}\right)+x^{11} y^2 \left(\frac{3729 v_1^6}{53739520}+\frac{27 v_1^2 v_2}{104960}\right)+x^2 y^{11} \left(\frac{3729 v_1^6}{53739520}+\frac{27 v_1^2 v_2}{104960}\right)+x^{10} y^3 \left(\frac{29429 v_1^6}{53739520}+\frac{71 v_1^2 v_2}{52480}\right)+x^3 y^{10} \left(\frac{29429 v_1^6}{53739520}+\frac{71 v_1^2 v_2}{52480}\right)+x^9 y^4 \left(\frac{5883 v_1^6}{2686976}+\frac{177 v_1^2 v_2}{41984}\right)+x^4 y^9 \left(\frac{5883 v_1^6}{2686976}+\frac{177 v_1^2 v_2}{41984}\right)+x^8 y^5 \left(\frac{279561 v_1^6}{53739520}+\frac{3637 v_1^2 v_2}{419840}\right)+x^5 y^8 \left(\frac{279561 v_1^6}{53739520}+\frac{3637 v_1^2 v_2}{419840}\right)+x^7 y^6 \left(\frac{53069 v_1^6}{6717440}+\frac{1291 v_1^2 v_2}{104960}\right)+x^6 y^7 \left(\frac{53069 v_1^6}{6717440}+\frac{1291 v_1^2 v_2}{104960}\right)\right) d^{13}+\left(x^{14} y \left(\frac{141 v_1^7}{429916160}+\frac{3 v_1^3 v_2}{839680}\right)+x y^{14} \left(\frac{141 v_1^7}{429916160}+\frac{3 v_1^3 v_2}{839680}\right)+x^{13} y^2 \left(\frac{231 v_1^7}{21495808}+\frac{21 v_1^3 v_2}{335872}\right)+x^2 y^{13} \left(\frac{231 v_1^7}{21495808}+\frac{21 v_1^3 v_2}{335872}\right)+x^{12} y^3 \left(\frac{1201 v_1^7}{10485760}+\frac{37 v_1^3 v_2}{81920}\right)+x^3 y^{12} \left(\frac{1201 v_1^7}{10485760}+\frac{37 v_1^3 v_2}{81920}\right)+x^{11} y^4 \left(\frac{517 v_1^7}{839680}+\frac{6333 v_1^3 v_2}{3358720}\right)+x^4 y^{11} \left(\frac{517 v_1^7}{839680}+\frac{6333 v_1^3 v_2}{3358720}\right)+x^{10} y^5 \left(\frac{85361 v_1^7}{42991616}+\frac{1735 v_1^3 v_2}{335872}\right)+x^5 y^{10} \left(\frac{85361 v_1^7}{42991616}+\frac{1735 v_1^3 v_2}{335872}\right)+x^9 y^6 \left(\frac{1798171 v_1^7}{429916160}+\frac{33137 v_1^3 v_2}{3358720}\right)+x^6 y^9 \left(\frac{1798171 v_1^7}{429916160}+\frac{33137 v_1^3 v_2}{3358720}\right)+x^8 y^7 \left(\frac{2585209 v_1^7}{429916160}+\frac{45493 v_1^3 v_2}{3358720}\right)+x^7 y^8 \left(\frac{2585209 v_1^7}{429916160}+\frac{45493 v_1^3 v_2}{3358720}\right)\right) d^{15}+\left(x^{16} y \left(\frac{25881 v_1^8}{705062502400}+\frac{2979 v_1^4 v_2}{5508300800}+\frac{9 v_2^2}{43033600}\right)+x y^{16} \left(\frac{25881 v_1^8}{705062502400}+\frac{2979 v_1^4 v_2}{5508300800}+\frac{9 v_2^2}{43033600}\right)+x^{15} y^2 \left(\frac{280593 v_1^8}{176265625600}+\frac{9081 v_1^4 v_2}{688537600}+\frac{27 v_2^2}{10758400}\right)+x^2 y^{15} \left(\frac{280593 v_1^8}{176265625600}+\frac{9081 v_1^4 v_2}{688537600}+\frac{27 v_2^2}{10758400}\right)+x^{14} y^3 \left(\frac{15589481 v_1^8}{705062502400}+\frac{347837 v_1^4 v_2}{2754150400}+\frac{39 v_2^2}{2689600}\right)+x^3 y^{14} \left(\frac{15589481 v_1^8}{705062502400}+\frac{347837 v_1^4 v_2}{2754150400}+\frac{39 v_2^2}{2689600}\right)+x^{13} y^4 \left(\frac{678209 v_1^8}{4406640640}+\frac{47047 v_1^4 v_2}{68853760}+\frac{231 v_2^2}{4303360}\right)+x^4 y^{13} \left(\frac{678209 v_1^8}{4406640640}+\frac{47047 v_1^4 v_2}{68853760}+\frac{231 v_2^2}{4303360}\right)+x^{12} y^5 \left(\frac{227224819 v_1^8}{352531251200}+\frac{6634921 v_1^4 v_2}{2754150400}+\frac{1533 v_2^2}{10758400}\right)+x^5 y^{12} \left(\frac{227224819 v_1^8}{352531251200}+\frac{6634921 v_1^4 v_2}{2754150400}+\frac{1533 v_2^2}{10758400}\right)+x^{11} y^6 \left(\frac{1257218737 v_1^8}{705062502400}+\frac{4091531 v_1^4 v_2}{688537600}+\frac{3087 v_2^2}{10758400}\right)+x^6 y^{11} \left(\frac{1257218737 v_1^8}{705062502400}+\frac{4091531 v_1^4 v_2}{688537600}+\frac{3087 v_2^2}{10758400}\right)+x^{10} y^7 \left(\frac{242029301 v_1^8}{70506250240}+\frac{5872809 v_1^4 v_2}{550830080}+\frac{243 v_2^2}{537920}\right)+x^7 y^{10} \left(\frac{242029301 v_1^8}{70506250240}+\frac{5872809 v_1^4 v_2}{550830080}+\frac{243 v_2^2}{537920}\right)+x^9 y^8 \left(\frac{3336593521 v_1^8}{705062502400}+\frac{78290759 v_1^4 v_2}{5508300800}+\frac{24309 v_2^2}{43033600}\right)+x^8 y^9 \left(\frac{3336593521 v_1^8}{705062502400}+\frac{78290759 v_1^4 v_2}{5508300800}+\frac{24309 v_2^2}{43033600}\right)\right) d^{17}+\left(x^{18} y \left(\frac{23113 v_1^9}{5640500019200}+\frac{1701 v_1^5 v_2}{22033203200}+\frac{27 v_1 v_2^2}{344268800}\right)+x y^{18} \left(\frac{23113 v_1^9}{5640500019200}+\frac{1701 v_1^5 v_2}{22033203200}+\frac{27 v_1 v_2^2}{344268800}\right)+x^{17} y^2 \left(\frac{1285029 v_1^9}{5640500019200}+\frac{111051 v_1^5 v_2}{44066406400}+\frac{243 v_1 v_2^2}{172134400}\right)+x^2 y^{17} \left(\frac{1285029 v_1^9}{5640500019200}+\frac{111051 v_1^5 v_2}{44066406400}+\frac{243 v_1 v_2^2}{172134400}\right)+x^{16} y^3 \left(\frac{1413653 v_1^9}{352531251200}+\frac{1369767 v_1^5 v_2}{44066406400}+\frac{3867 v_1 v_2^2}{344268800}\right)+x^3 y^{16} \left(\frac{1413653 v_1^9}{352531251200}+\frac{1369767 v_1^5 v_2}{44066406400}+\frac{3867 v_1 v_2^2}{344268800}\right)+x^{15} y^4 \left(\frac{49542783 v_1^9}{1410125004800}+\frac{1169841 v_1^5 v_2}{5508300800}+\frac{4707 v_1 v_2^2}{86067200}\right)+x^4 y^{15} \left(\frac{49542783 v_1^9}{1410125004800}+\frac{1169841 v_1^5 v_2}{5508300800}+\frac{4707 v_1 v_2^2}{86067200}\right)+x^{14} y^5 \left(\frac{522214951 v_1^9}{2820250009600}+\frac{20669099 v_1^5 v_2}{22033203200}+\frac{3993 v_1 v_2^2}{21516800}\right)+x^5 y^{14} \left(\frac{522214951 v_1^9}{2820250009600}+\frac{20669099 v_1^5 v_2}{22033203200}+\frac{3993 v_1 v_2^2}{21516800}\right)+x^{13} y^6 \left(\frac{365668037 v_1^9}{564050001920}+\frac{3194373 v_1^5 v_2}{1101660160}+\frac{4039 v_1 v_2^2}{8606720}\right)+x^6 y^{13} \left(\frac{365668037 v_1^9}{564050001920}+\frac{3194373 v_1^5 v_2}{1101660160}+\frac{4039 v_1 v_2^2}{8606720}\right)+x^{12} y^7 \left(\frac{1126129163 v_1^9}{705062502400}+\frac{144581173 v_1^5 v_2}{22033203200}+\frac{79069 v_1 v_2^2}{86067200}\right)+x^7 y^{12} \left(\frac{1126129163 v_1^9}{705062502400}+\frac{144581173 v_1^5 v_2}{22033203200}+\frac{79069 v_1 v_2^2}{86067200}\right)+x^{11} y^8 \left(\frac{4042054039 v_1^9}{1410125004800}+\frac{492174319 v_1^5 v_2}{44066406400}+\frac{245007 v_1 v_2^2}{172134400}\right)+x^8 y^{11} \left(\frac{4042054039 v_1^9}{1410125004800}+\frac{492174319 v_1^5 v_2}{44066406400}+\frac{245007 v_1 v_2^2}{172134400}\right)+x^{10} y^9 \left(\frac{10780550281 v_1^9}{2820250009600}+\frac{639838853 v_1^5 v_2}{44066406400}+\frac{304129 v_1 v_2^2}{172134400}\right)+x^9 y^{10} \left(\frac{10780550281 v_1^9}{2820250009600}+\frac{639838853 v_1^5 v_2}{44066406400}+\frac{304129 v_1 v_2^2}{172134400}\right)\right) d^{19}+\left(x^{20} y \left(\frac{20601 v_1^{10}}{45124000153600}+\frac{3729 v_1^6 v_2}{352531251200}+\frac{27 v_1^2 v_2^2}{1377075200}\right)+x y^{20} \left(\frac{20601 v_1^{10}}{45124000153600}+\frac{3729 v_1^6 v_2}{352531251200}+\frac{27 v_1^2 v_2^2}{1377075200}\right)+x^{19} y^2 \left(\frac{57255 v_1^{10}}{1804960006144}+\frac{789 v_1^6 v_2}{1762656256}+\frac{27 v_1^2 v_2^2}{55083008}\right)+x^2 y^{19} \left(\frac{57255 v_1^{10}}{1804960006144}+\frac{789 v_1^6 v_2}{1762656256}+\frac{27 v_1^2 v_2^2}{55083008}\right)+x^{18} y^3 \left(\frac{31212959 v_1^{10}}{45124000153600}+\frac{1224183 v_1^6 v_2}{176265625600}+\frac{14121 v_1^2 v_2^2}{2754150400}\right)+x^3 y^{18} \left(\frac{31212959 v_1^{10}}{45124000153600}+\frac{1224183 v_1^6 v_2}{176265625600}+\frac{14121 v_1^2 v_2^2}{2754150400}\right)+x^{17} y^4 \left(\frac{336642879 v_1^{10}}{45124000153600}+\frac{10342863 v_1^6 v_2}{176265625600}+\frac{87561 v_1^2 v_2^2}{2754150400}\right)+x^4 y^{17} \left(\frac{336642879 v_1^{10}}{45124000153600}+\frac{10342863 v_1^6 v_2}{176265625600}+\frac{87561 v_1^2 v_2^2}{2754150400}\right)+x^{16} y^5 \left(\frac{136260851 v_1^{10}}{2820250009600}+\frac{14009073 v_1^6 v_2}{44066406400}+\frac{185427 v_1^2 v_2^2}{1377075200}\right)+x^5 y^{16} \left(\frac{136260851 v_1^{10}}{2820250009600}+\frac{14009073 v_1^6 v_2}{44066406400}+\frac{185427 v_1^2 v_2^2}{1377075200}\right)+x^{15} y^6 \left(\frac{4701683993 v_1^{10}}{22562000076800}+\frac{53021683 v_1^6 v_2}{44066406400}+\frac{288921 v_1^2 v_2^2}{688537600}\right)+x^6 y^{15} \left(\frac{4701683993 v_1^{10}}{22562000076800}+\frac{53021683 v_1^6 v_2}{44066406400}+\frac{288921 v_1^2 v_2^2}{688537600}\right)+x^{14} y^7 \left(\frac{14363831151 v_1^{10}}{22562000076800}+\frac{589621049 v_1^6 v_2}{176265625600}+\frac{172993 v_1^2 v_2^2}{172134400}\right)+x^7 y^{14} \left(\frac{14363831151 v_1^{10}}{22562000076800}+\frac{589621049 v_1^6 v_2}{176265625600}+\frac{172993 v_1^2 v_2^2}{172134400}\right)+x^{13} y^8 \left(\frac{1615234997 v_1^{10}}{1128100003840}+\frac{496857327 v_1^6 v_2}{70506250240}+\frac{209317 v_1^2 v_2^2}{110166016}\right)+x^8 y^{13} \left(\frac{1615234997 v_1^{10}}{1128100003840}+\frac{496857327 v_1^6 v_2}{70506250240}+\frac{209317 v_1^2 v_2^2}{110166016}\right)+x^{12} y^9 \left(\frac{856265899 v_1^{10}}{352531251200}+\frac{505501721 v_1^6 v_2}{44066406400}+\frac{7938873 v_1^2 v_2^2}{2754150400}\right)+x^9 y^{12} \left(\frac{856265899 v_1^{10}}{352531251200}+\frac{505501721 v_1^6 v_2}{44066406400}+\frac{7938873 v_1^2 v_2^2}{2754150400}\right)+x^{11} y^{10} \left(\frac{71136117417 v_1^{10}}{22562000076800}+\frac{2572869683 v_1^6 v_2}{176265625600}+\frac{4878523 v_1^2 v_2^2}{1377075200}\right)+x^{10} y^{11} \left(\frac{71136117417 v_1^{10}}{22562000076800}+\frac{2572869683 v_1^6 v_2}{176265625600}+\frac{4878523 v_1^2 v_2^2}{1377075200}\right)\right) d^{21}+O[d]^{22}$
$(x+y) d+\frac{1}{624} \left(x^4 y v_1+2 x^3 y^2 v_1+2 x^2 y^3 v_1+x y^4 v_1\right) d^5+\frac{\left(x^8 y v_1^2+6 x^7 y^2 v_1^2+16 x^6 y^3 v_1^2+25 x^5 y^4 v_1^2+25 x^4 y^5 v_1^2+16 x^3 y^6 v_1^2+6 x^2 y^7 v_1^2+x y^8 v_1^2\right) d^9}{389376}+\frac{\left(x^{12} y v_1^3+12 x^{11} y^2 v_1^3+60 x^{10} y^3 v_1^3+175 x^9 y^4 v_1^3+340 x^8 y^5 v_1^3+468 x^7 y^6 v_1^3+468 x^6 y^7 v_1^3+340 x^5 y^8 v_1^3+175 x^4 y^9 v_1^3+60 x^3 y^{10} v_1^3+12 x^2 y^{11} v_1^3+x y^{12} v_1^3\right) d^{13}}{242970624}+\frac{\left(x^{16} y v_1^4+20 x^{15} y^2 v_1^4+160 x^{14} y^3 v_1^4+735 x^{13} y^4 v_1^4+2251 x^{12} y^5 v_1^4+4968 x^{11} y^6 v_1^4+8256 x^{10} y^7 v_1^4+10585 x^9 y^8 v_1^4+10585 x^8 y^9 v_1^4+8256 x^7 y^{10} v_1^4+4968 x^6 y^{11} v_1^4+2251 x^5 y^{12} v_1^4+735 x^4 y^{13} v_1^4+160 x^3 y^{14} v_1^4+20 x^2 y^{15} v_1^4+x y^{16} v_1^4\right) d^{17}}{151613669376}+\frac{\left(x^{20} y v_1^5+30 x^{19} y^2 v_1^5+350 x^{18} y^3 v_1^5+2310 x^{17} y^4 v_1^5+10105 x^{16} y^5 v_1^5+31912 x^{15} y^6 v_1^5+76596 x^{14} y^7 v_1^5+144348 x^{13} y^8 v_1^5+218026 x^{12} y^9 v_1^5+267186 x^{11} y^{10} v_1^5+267186 x^{10} y^{11} v_1^5+218026 x^9 y^{12} v_1^5+144348 x^8 y^{13} v_1^5+76596 x^7 y^{14} v_1^5+31912 x^6 y^{15} v_1^5+10105 x^5 y^{16} v_1^5+2310 x^4 y^{17} v_1^5+350 x^3 y^{18} v_1^5+30 x^2 y^{19} v_1^5+x y^{20} v_1^5\right) d^{21}}{94606929690624}+\left(x^{24} y \left(\frac{15894775065625 v_1^6}{939835406249999984232178384896}+\frac{5 v_2}{59604644775390624}\right)+x y^{24} \left(\frac{15894775065625 v_1^6}{939835406249999984232178384896}+\frac{5 v_2}{59604644775390624}\right)+x^{23} y^2 \left(\frac{111389770183855 v_1^6}{156639234374999997372029730816}+\frac{5 v_2}{4967053731282552}\right)+x^2 y^{23} \left(\frac{111389770183855 v_1^6}{156639234374999997372029730816}+\frac{5 v_2}{4967053731282552}\right)+x^{22} y^3 \left(\frac{111416092001455 v_1^6}{9789952148437499835751858176}+\frac{115 v_2}{14901161193847656}\right)+x^3 y^{22} \left(\frac{111416092001455 v_1^6}{9789952148437499835751858176}+\frac{115 v_2}{14901161193847656}\right)+x^{21} y^4 \left(\frac{1225679464629125 v_1^6}{12049171874999999797848440832}+\frac{1265 v_2}{29802322387695312}\right)+x^4 y^{21} \left(\frac{1225679464629125 v_1^6}{12049171874999999797848440832}+\frac{1265 v_2}{29802322387695312}\right)+x^{20} y^5 \left(\frac{80343519619830865 v_1^6}{134262200892857140604596912128}+\frac{253 v_2}{1419158208937872}\right)+x^5 y^{20} \left(\frac{80343519619830865 v_1^6}{134262200892857140604596912128}+\frac{253 v_2}{1419158208937872}\right)+x^{19} y^6 \left(\frac{28365113120394023 v_1^6}{11188516741071428383716409344}+\frac{1265 v_2}{2128737313406808}\right)+x^6 y^{19} \left(\frac{28365113120394023 v_1^6}{11188516741071428383716409344}+\frac{1265 v_2}{2128737313406808}\right)+x^{18} y^7 \left(\frac{426964507557713725 v_1^6}{52213078124999999124009910272}+\frac{24035 v_2}{14901161193847656}\right)+x^7 y^{18} \left(\frac{426964507557713725 v_1^6}{52213078124999999124009910272}+\frac{24035 v_2}{14901161193847656}\right)+x^{17} y^8 \left(\frac{6525850678086601961 v_1^6}{313278468749999994744059461632}+\frac{24035 v_2}{6622738308376736}\right)+x^8 y^{17} \left(\frac{6525850678086601961 v_1^6}{313278468749999994744059461632}+\frac{24035 v_2}{6622738308376736}\right)+x^{16} y^9 \left(\frac{40381339565896022695 v_1^6}{939835406249999984232178384896}+\frac{408595 v_2}{59604644775390624}\right)+x^9 y^{16} \left(\frac{40381339565896022695 v_1^6}{939835406249999984232178384896}+\frac{408595 v_2}{59604644775390624}\right)+x^{15} y^{10} \left(\frac{879568729652135855 v_1^6}{12049171874999999797848440832}+\frac{81719 v_2}{7450580596923828}\right)+x^{10} y^{15} \left(\frac{879568729652135855 v_1^6}{12049171874999999797848440832}+\frac{81719 v_2}{7450580596923828}\right)+x^{14} y^{11} \left(\frac{2697637749229768841 v_1^6}{26106539062499999562004955136}+\frac{37145 v_2}{2483526865641276}\right)+x^{11} y^{14} \left(\frac{2697637749229768841 v_1^6}{26106539062499999562004955136}+\frac{37145 v_2}{2483526865641276}\right)+x^{13} y^{12} \left(\frac{2746407666909999173 v_1^6}{22377033482142856767432818688}+\frac{37145 v_2}{2128737313406808}\right)+x^{12} y^{13} \left(\frac{2746407666909999173 v_1^6}{22377033482142856767432818688}+\frac{37145 v_2}{2128737313406808}\right)\right) d^{25}+\left(x^{28} y \left(\frac{15869506120729 v_1^7}{586457293499999990160879312175104}+\frac{5 v_1 v_2}{18596649169921874688}\right)+x y^{28} \left(\frac{15869506120729 v_1^7}{586457293499999990160879312175104}+\frac{5 v_1 v_2}{18596649169921874688}\right)+x^{27} y^2 \left(\frac{15901092301849 v_1^7}{10472451669642856967158559145984}+\frac{5 v_1 v_2}{885554722377232128}\right)+x^2 y^{27} \left(\frac{15901092301849 v_1^7}{10472451669642856967158559145984}+\frac{5 v_1 v_2}{885554722377232128}\right)+x^{26} y^3 \left(\frac{779585200599241 v_1^7}{24435720562499999590036638007296}+\frac{295 v_1 v_2}{4649162292480468672}\right)+x^3 y^{26} \left(\frac{779585200599241 v_1^7}{24435720562499999590036638007296}+\frac{295 v_1 v_2}{4649162292480468672}\right)+x^{25} y^4 \left(\frac{2784849541866775 v_1^7}{7518683249999999873857427079168}+\frac{1375 v_1 v_2}{2861022949218749952}\right)+x^4 y^{25} \left(\frac{2784849541866775 v_1^7}{7518683249999999873857427079168}+\frac{1375 v_1 v_2}{2861022949218749952}\right)+x^{24} y^5 \left(\frac{1648495958666858305 v_1^7}{586457293499999990160879312175104}+\frac{100001 v_1 v_2}{37193298339843749376}\right)+x^5 y^{24} \left(\frac{1648495958666858305 v_1^7}{586457293499999990160879312175104}+\frac{100001 v_1 v_2}{37193298339843749376}\right)+x^{23} y^6 \left(\frac{748049146473355721 v_1^7}{48871441124999999180073276014592}+\frac{108851 v_1 v_2}{9298324584960937344}\right)+x^6 y^{23} \left(\frac{748049146473355721 v_1^7}{48871441124999999180073276014592}+\frac{108851 v_1 v_2}{9298324584960937344}\right)+x^{22} y^7 \left(\frac{344237725648985101 v_1^7}{5430160124999999908897030668288}+\frac{127213 v_1 v_2}{3099441528320312448}\right)+x^7 y^{22} \left(\frac{344237725648985101 v_1^7}{5430160124999999908897030668288}+\frac{127213 v_1 v_2}{3099441528320312448}\right)+x^{21} y^8 \left(\frac{390342124050384605 v_1^7}{1879670812499999968464356769792}+\frac{4413079 v_1 v_2}{37193298339843749376}\right)+x^8 y^{21} \left(\frac{390342124050384605 v_1^7}{1879670812499999968464356769792}+\frac{4413079 v_1 v_2}{37193298339843749376}\right)+x^{20} y^9 \left(\frac{324327332212013514385 v_1^7}{586457293499999990160879312175104}+\frac{2674969 v_1 v_2}{9298324584960937344}\right)+x^9 y^{20} \left(\frac{324327332212013514385 v_1^7}{586457293499999990160879312175104}+\frac{2674969 v_1 v_2}{9298324584960937344}\right)+x^{19} y^{10} \left(\frac{119356036010369332225 v_1^7}{97742882249999998360146552029184}+\frac{612007 v_1 v_2}{1033147176106770816}\right)+x^{10} y^{19} \left(\frac{119356036010369332225 v_1^7}{97742882249999998360146552029184}+\frac{612007 v_1 v_2}{1033147176106770816}\right)+x^{18} y^{11} \left(\frac{3518417973385508291 v_1^7}{1551474321428571402542008762368}+\frac{694393 v_1 v_2}{664166041782924096}\right)+x^{11} y^{18} \left(\frac{3518417973385508291 v_1^7}{1551474321428571402542008762368}+\frac{694393 v_1 v_2}{664166041782924096}\right)+x^{17} y^{12} \left(\frac{87448502967322703987 v_1^7}{24435720562499999590036638007296}+\frac{29612431 v_1 v_2}{18596649169921874688}\right)+x^{12} y^{17} \left(\frac{87448502967322703987 v_1^7}{24435720562499999590036638007296}+\frac{29612431 v_1 v_2}{18596649169921874688}\right)+x^{16} y^{13} \left(\frac{944761779800464258337 v_1^7}{195485764499999996720293104058368}+\frac{26068361 v_1 v_2}{12397766113281249792}\right)+x^{13} y^{16} \left(\frac{944761779800464258337 v_1^7}{195485764499999996720293104058368}+\frac{26068361 v_1 v_2}{12397766113281249792}\right)+x^{15} y^{14} \left(\frac{822537025410352705945 v_1^7}{146614323374999997540219828043776}+\frac{11225219 v_1 v_2}{4649162292480468672}\right)+x^{14} y^{15} \left(\frac{822537025410352705945 v_1^7}{146614323374999997540219828043776}+\frac{11225219 v_1 v_2}{4649162292480468672}\right)\right) d^{29}+\left(x^{32} y \left(\frac{15844237175833 v_1^8}{365949351143999993860388690797264896}+\frac{5 v_1^2 v_2}{7736206054687499870208}\right)+x y^{32} \left(\frac{15844237175833 v_1^8}{365949351143999993860388690797264896}+\frac{5 v_1^2 v_2}{7736206054687499870208}\right)+x^{31} y^2 \left(\frac{15886352083993 v_1^8}{5082629876999999914727620705517568}+\frac{5 v_1^2 v_2}{241756439208984370944}\right)+x^2 y^{31} \left(\frac{15886352083993 v_1^8}{5082629876999999914727620705517568}+\frac{5 v_1^2 v_2}{241756439208984370944}\right)+x^{30} y^3 \left(\frac{79502829327485 v_1^8}{952993101937499984011428882284544}+\frac{925 v_1^2 v_2}{2901077270507812451328}\right)+x^3 y^{30} \left(\frac{79502829327485 v_1^8}{952993101937499984011428882284544}+\frac{925 v_1^2 v_2}{2901077270507812451328}\right)+x^{29} y^4 \left(\frac{10623470976312925 v_1^8}{8713079789142856996675921209458688}+\frac{875 v_1^2 v_2}{276293073381696423936}\right)+x^4 y^{29} \left(\frac{10623470976312925 v_1^8}{8713079789142856996675921209458688}+\frac{875 v_1^2 v_2}{276293073381696423936}\right)+x^{28} y^5 \left(\frac{4236372856773064435 v_1^8}{365949351143999993860388690797264896}+\frac{263213 v_1^2 v_2}{11604309082031249805312}\right)+x^5 y^{28} \left(\frac{4236372856773064435 v_1^8}{365949351143999993860388690797264896}+\frac{263213 v_1^2 v_2}{11604309082031249805312}\right)+x^{27} y^6 \left(\frac{256662993696037687 v_1^8}{3267404920928571373753470453547008}+\frac{103289 v_1^2 v_2}{828879220145089271808}\right)+x^6 y^{27} \left(\frac{256662993696037687 v_1^8}{3267404920928571373753470453547008}+\frac{103289 v_1^2 v_2}{828879220145089271808}\right)+x^{26} y^7 \left(\frac{456952632281567293 v_1^8}{1129473305999999981050582379003904}+\frac{1056749 v_1^2 v_2}{1934051513671874967552}\right)+x^7 y^{26} \left(\frac{456952632281567293 v_1^8}{1129473305999999981050582379003904}+\frac{1056749 v_1^2 v_2}{1934051513671874967552}\right)+x^{25} y^8 \left(\frac{15458898892956273605 v_1^8}{9383316695999999842574068994801664}+\frac{3509125 v_1^2 v_2}{1785278320312499970048}\right)+x^8 y^{25} \left(\frac{15458898892956273605 v_1^8}{9383316695999999842574068994801664}+\frac{3509125 v_1^2 v_2}{1785278320312499970048}\right)+x^{24} y^9 \left(\frac{32232870885186107855 v_1^8}{5902408889419354739683688561246208}+\frac{738541 v_1^2 v_2}{124777517011088707584}\right)+x^9 y^{24} \left(\frac{32232870885186107855 v_1^8}{5902408889419354739683688561246208}+\frac{738541 v_1^2 v_2}{124777517011088707584}\right)+x^{23} y^{10} \left(\frac{918071835579518063707 v_1^8}{60991558523999998976731448466210816}+\frac{14644873 v_1^2 v_2}{967025756835937483776}\right)+x^{10} y^{23} \left(\frac{918071835579518063707 v_1^8}{60991558523999998976731448466210816}+\frac{14644873 v_1^2 v_2}{967025756835937483776}\right)+x^{22} y^{11} \left(\frac{356356145653746944663 v_1^8}{10165259753999999829455241411035136}+\frac{64406831 v_1^2 v_2}{1934051513671874967552}\right)+x^{11} y^{22} \left(\frac{356356145653746944663 v_1^8}{10165259753999999829455241411035136}+\frac{64406831 v_1^2 v_2}{1934051513671874967552}\right)+x^{21} y^{12} \left(\frac{27297126725090324993 v_1^8}{390971528999999993440586208116736}+\frac{245562743 v_1^2 v_2}{3868103027343749935104}\right)+x^{12} y^{21} \left(\frac{27297126725090324993 v_1^8}{390971528999999993440586208116736}+\frac{245562743 v_1^2 v_2}{3868103027343749935104}\right)+x^{20} y^{13} \left(\frac{14636936172405523441169 v_1^8}{121983117047999997953462896932421632}+\frac{408524321 v_1^2 v_2}{3868103027343749935104}\right)+x^{13} y^{20} \left(\frac{14636936172405523441169 v_1^8}{121983117047999997953462896932421632}+\frac{408524321 v_1^2 v_2}{3868103027343749935104}\right)+x^{19} y^{14} \left(\frac{195108779150312688715 v_1^8}{1089134973642857124584490151182336}+\frac{42573253 v_1^2 v_2}{276293073381696423936}\right)+x^{14} y^{19} \left(\frac{195108779150312688715 v_1^8}{1089134973642857124584490151182336}+\frac{42573253 v_1^2 v_2}{276293073381696423936}\right)+x^{18} y^{15} \left(\frac{42710669317167842107987 v_1^8}{182974675571999996930194345398632448}+\frac{47830087 v_1^2 v_2}{241756439208984370944}\right)+x^{15} y^{18} \left(\frac{42710669317167842107987 v_1^8}{182974675571999996930194345398632448}+\frac{47830087 v_1^2 v_2}{241756439208984370944}\right)+x^{17} y^{16} \left(\frac{16239514009974475019539 v_1^8}{60991558523999998976731448466210816}+\frac{216671155 v_1^2 v_2}{967025756835937483776}\right)+x^{16} y^{17} \left(\frac{16239514009974475019539 v_1^8}{60991558523999998976731448466210816}+\frac{216671155 v_1^2 v_2}{967025756835937483776}\right)\right) d^{33}+\left(x^{36} y \left(\frac{15818968230937 v_1^9}{228352395113855996168882543057493295104}+\frac{5 v_1^3 v_2}{3620544433593749939257344}\right)+x y^{36} \left(\frac{15818968230937 v_1^9}{228352395113855996168882543057493295104}+\frac{5 v_1^3 v_2}{3620544433593749939257344}\right)+x^{35} y^2 \left(\frac{79347530603645 v_1^9}{12686244172991999787160141280971849728}+\frac{25 v_1^3 v_2}{402282714843749993250816}\right)+x^2 y^{35} \left(\frac{79347530603645 v_1^9}{12686244172991999787160141280971849728}+\frac{25 v_1^3 v_2}{402282714843749993250816}\right)+x^{34} y^3 \left(\frac{41614243167395 v_1^9}{201368955126857139478732401285267456}+\frac{25 v_1^3 v_2}{19893101283482142523392}\right)+x^3 y^{34} \left(\frac{41614243167395 v_1^9}{201368955126857139478732401285267456}+\frac{25 v_1^3 v_2}{19893101283482142523392}\right)+x^{33} y^4 \left(\frac{40347668991919355 v_1^9}{10873923576850285531851549669404442624}+\frac{32725 v_1^3 v_2}{2068882533482142822432768}\right)+x^4 y^{33} \left(\frac{40347668991919355 v_1^9}{10873923576850285531851549669404442624}+\frac{32725 v_1^3 v_2}{2068882533482142822432768}\right)+x^{32} y^5 \left(\frac{4914275593805911199 v_1^9}{114176197556927998084441271528746647552}+\frac{226669 v_1^3 v_2}{1609130859374999973003264}\right)+x^5 y^{32} \left(\frac{4914275593805911199 v_1^9}{114176197556927998084441271528746647552}+\frac{226669 v_1^3 v_2}{1609130859374999973003264}\right)+x^{31} y^6 \left(\frac{70455814785377423 v_1^9}{198222565202999996674377207515185152}+\frac{11957 v_1^3 v_2}{12571334838867187289088}\right)+x^6 y^{31} \left(\frac{70455814785377423 v_1^9}{198222565202999996674377207515185152}+\frac{11957 v_1^3 v_2}{12571334838867187289088}\right)+x^{30} y^7 \left(\frac{14097028121075707139 v_1^9}{6343122086495999893580070640485924864}+\frac{767525 v_1^3 v_2}{150856018066406247469056}\right)+x^7 y^{30} \left(\frac{14097028121075707139 v_1^9}{6343122086495999893580070640485924864}+\frac{767525 v_1^3 v_2}{150856018066406247469056}\right)+x^{29} y^8 \left(\frac{104411723354368428805 v_1^9}{9514683129743999840370105960728887296}+\frac{107300525 v_1^3 v_2}{4827392578124999919009792}\right)+x^8 y^{29} \left(\frac{104411723354368428805 v_1^9}{9514683129743999840370105960728887296}+\frac{107300525 v_1^3 v_2}{4827392578124999919009792}\right)+x^{28} y^9 \left(\frac{629469180424489842205 v_1^9}{14272024694615999760555158941093330944}+\frac{293592769 v_1^3 v_2}{3620544433593749939257344}\right)+x^9 y^{28} \left(\frac{629469180424489842205 v_1^9}{14272024694615999760555158941093330944}+\frac{293592769 v_1^3 v_2}{3620544433593749939257344}\right)+x^{27} y^{10} \left(\frac{25072015216502345267 v_1^9}{169905055888285711435180463584444416}+\frac{5414051 v_1^3 v_2}{21550859723772321067008}\right)+x^{10} y^{27} \left(\frac{25072015216502345267 v_1^9}{169905055888285711435180463584444416}+\frac{5414051 v_1^3 v_2}{21550859723772321067008}\right)+x^{26} y^{11} \left(\frac{2651904477169314586979 v_1^9}{6343122086495999893580070640485924864}+\frac{808001191 v_1^3 v_2}{1206848144531249979752448}\right)+x^{11} y^{26} \left(\frac{2651904477169314586979 v_1^9}{6343122086495999893580070640485924864}+\frac{808001191 v_1^3 v_2}{1206848144531249979752448}\right)+x^{25} y^{12} \left(\frac{212525530298538601459 v_1^9}{209113914939428567920222109027008512}+\frac{82248835 v_1^3 v_2}{53048270089285713395712}\right)+x^{12} y^{25} \left(\frac{212525530298538601459 v_1^9}{209113914939428567920222109027008512}+\frac{82248835 v_1^3 v_2}{53048270089285713395712}\right)+x^{24} y^{13} \left(\frac{20377291863632329702793 v_1^9}{9514683129743999840370105960728887296}+\frac{2846503511 v_1^3 v_2}{905136108398437484814336}\right)+x^{13} y^{24} \left(\frac{20377291863632329702793 v_1^9}{9514683129743999840370105960728887296}+\frac{2846503511 v_1^3 v_2}{905136108398437484814336}\right)+x^{23} y^{14} \left(\frac{12507092558232277646861 v_1^9}{3171561043247999946790035320242962432}+\frac{2261560807 v_1^3 v_2}{402282714843749993250816}\right)+x^{14} y^{23} \left(\frac{12507092558232277646861 v_1^9}{3171561043247999946790035320242962432}+\frac{2261560807 v_1^3 v_2}{402282714843749993250816}\right)+x^{22} y^{15} \left(\frac{121479841347987297520277 v_1^9}{19029366259487999680740211921457774592}+\frac{32222728393 v_1^3 v_2}{3620544433593749939257344}\right)+x^{15} y^{22} \left(\frac{121479841347987297520277 v_1^9}{19029366259487999680740211921457774592}+\frac{32222728393 v_1^3 v_2}{3620544433593749939257344}\right)+x^{21} y^{16} \left(\frac{347369139515296130906831 v_1^9}{38058732518975999361480423842915549184}+\frac{90681200585 v_1^3 v_2}{7241088867187499878514688}\right)+x^{16} y^{21} \left(\frac{347369139515296130906831 v_1^9}{38058732518975999361480423842915549184}+\frac{90681200585 v_1^3 v_2}{7241088867187499878514688}\right)+x^{20} y^{17} \left(\frac{220041125907040850579369 v_1^9}{19029366259487999680740211921457774592}+\frac{4737832537 v_1^3 v_2}{301712036132812494938112}\right)+x^{17} y^{20} \left(\frac{220041125907040850579369 v_1^9}{19029366259487999680740211921457774592}+\frac{4737832537 v_1^3 v_2}{301712036132812494938112}\right)+x^{19} y^{18} \left(\frac{61885692294865179454243 v_1^9}{4757341564871999920185052980364443648}+\frac{63638148713 v_1^3 v_2}{3620544433593749939257344}\right)+x^{18} y^{19} \left(\frac{61885692294865179454243 v_1^9}{4757341564871999920185052980364443648}+\frac{63638148713 v_1^3 v_2}{3620544433593749939257344}\right)\right) d^{37}+O[d]^{38}$
$(x+y) d+\frac{\left(x^6 y v_1+3 x^5 y^2 v_1+5 x^4 y^3 v_1+5 x^3 y^4 v_1+3 x^2 y^5 v_1+x y^6 v_1\right) d^7}{117648}+\frac{\left(x^{12} y v_1^2+9 x^{11} y^2 v_1^2+38 x^{10} y^3 v_1^2+100 x^9 y^4 v_1^2+183 x^8 y^5 v_1^2+245 x^7 y^6 v_1^2+245 x^6 y^7 v_1^2+183 x^5 y^8 v_1^2+100 x^4 y^9 v_1^2+38 x^3 y^{10} v_1^2+9 x^2 y^{11} v_1^2+x y^{12} v_1^2\right) d^{13}}{13841051904}+\frac{\left(x^{18} y v_1^3+18 x^{17} y^2 v_1^3+140 x^{16} y^3 v_1^3+660 x^{15} y^4 v_1^3+2163 x^{14} y^5 v_1^3+5292 x^{13} y^6 v_1^3+10073 x^{12} y^7 v_1^3+15291 x^{11} y^8 v_1^3+18778 x^{10} y^9 v_1^3+18778 x^9 y^{10} v_1^3+15291 x^8 y^{11} v_1^3+10073 x^7 y^{12} v_1^3+5292 x^6 y^{13} v_1^3+2163 x^5 y^{14} v_1^3+660 x^4 y^{15} v_1^3+140 x^3 y^{16} v_1^3+18 x^2 y^{17} v_1^3+x y^{18} v_1^3\right) d^{19}}{1628372074401792}+\frac{\left(x^{24} y v_1^4+30 x^{23} y^2 v_1^4+370 x^{22} y^3 v_1^4+2695 x^{21} y^4 v_1^4+13482 x^{20} y^5 v_1^4+50232 x^{19} y^6 v_1^4+146417 x^{18} y^7 v_1^4+344727 x^{17} y^8 v_1^4+669895 x^{16} y^9 v_1^4+1090386 x^{15} y^{10} v_1^4+1501281 x^{14} y^{11} v_1^4+1759044 x^{13} y^{12} v_1^4+1759044 x^{12} y^{13} v_1^4+1501281 x^{11} y^{14} v_1^4+1090386 x^{10} y^{15} v_1^4+669895 x^9 y^{16} v_1^4+344727 x^8 y^{17} v_1^4+146417 x^7 y^{18} v_1^4+50232 x^6 y^{19} v_1^4+13482 x^5 y^{20} v_1^4+2695 x^4 y^{21} v_1^4+370 x^3 y^{22} v_1^4+30 x^2 y^{23} v_1^4+x y^{24} v_1^4\right) d^{25}}{191574717809222025216}+\frac{\left(x^{30} y v_1^5+45 x^{29} y^2 v_1^5+805 x^{28} y^3 v_1^5+8330 x^{27} y^4 v_1^5+58464 x^{26} y^5 v_1^5+303576 x^{25} y^6 v_1^5+1230617 x^{24} y^7 v_1^5+4036575 x^{23} y^8 v_1^5+10985510 x^{22} y^9 v_1^5+25257694 x^{21} y^{10} v_1^5+49715370 x^{20} y^{11} v_1^5+84595524 x^{19} y^{12} v_1^5+125325240 x^{18} y^{13} v_1^5+162445482 x^{17} y^{14} v_1^5+184804575 x^{16} y^{15} v_1^5+184804575 x^{15} y^{16} v_1^5+162445482 x^{14} y^{17} v_1^5+125325240 x^{13} y^{18} v_1^5+84595524 x^{12} y^{19} v_1^5+49715370 x^{11} y^{20} v_1^5+25257694 x^{10} y^{21} v_1^5+10985510 x^9 y^{22} v_1^5+4036575 x^8 y^{23} v_1^5+1230617 x^7 y^{24} v_1^5+303576 x^6 y^{25} v_1^5+58464 x^5 y^{26} v_1^5+8330 x^4 y^{27} v_1^5+805 x^3 y^{28} v_1^5+45 x^2 y^{29} v_1^5+x y^{30} v_1^5\right) d^{31}}{22538382400819352822611968}+\frac{\left(x^{36} y v_1^6+63 x^{35} y^2 v_1^6+1540 x^{34} y^3 v_1^6+21420 x^{33} y^4 v_1^6+199836 x^{32} y^5 v_1^6+1369368 x^{31} y^6 v_1^6+7294961 x^{30} y^7 v_1^6+31392675 x^{29} y^8 v_1^6+112139540 x^{28} y^9 v_1^6+339246152 x^{27} y^{10} v_1^6+882390024 x^{26} y^{11} v_1^6+1996313904 x^{25} y^{12} v_1^6+3963806640 x^{24} y^{13} v_1^6+6955432950 x^{23} y^{14} v_1^6+10843612350 x^{22} y^{15} v_1^6+15079666480 x^{21} y^{16} v_1^6+18759068100 x^{20} y^{17} v_1^6+20913494940 x^{19} y^{18} v_1^6+20913494940 x^{18} y^{19} v_1^6+18759068100 x^{17} y^{20} v_1^6+15079666480 x^{16} y^{21} v_1^6+10843612350 x^{15} y^{22} v_1^6+6955432950 x^{14} y^{23} v_1^6+3963806640 x^{13} y^{24} v_1^6+1996313904 x^{12} y^{25} v_1^6+882390024 x^{11} y^{26} v_1^6+339246152 x^{10} y^{27} v_1^6+112139540 x^9 y^{28} v_1^6+31392675 x^8 y^{29} v_1^6+7294961 x^7 y^{30} v_1^6+1369368 x^6 y^{31} v_1^6+199836 x^5 y^{32} v_1^6+21420 x^4 y^{33} v_1^6+1540 x^3 y^{34} v_1^6+63 x^2 y^{35} v_1^6+x y^{36} v_1^6\right) d^{37}}{2651595612691595220874652811264}+\frac{\left(x^{42} y v_1^7+84 x^{41} y^2 v_1^7+2688 x^{40} y^3 v_1^7+48300 x^{39} y^4 v_1^7+576576 x^{38} y^5 v_1^7+5021016 x^{37} y^6 v_1^7+33834617 x^{36} y^7 v_1^7+183648447 x^{35} y^8 v_1^7+826327700 x^{34} y^9 v_1^7+3148755096 x^{33} y^{10} v_1^7+10328591052 x^{32} y^{11} v_1^7+29538690480 x^{31} y^{12} v_1^7+74398956984 x^{30} y^{13} v_1^7+166366137285 x^{29} y^{14} v_1^7+332424118596 x^{28} y^{15} v_1^7+596625629828 x^{27} y^{16} v_1^7+965802148056 x^{26} y^{17} v_1^7+1414686478764 x^{25} y^{18} v_1^7+1879716343440 x^{24} y^{19} v_1^7+2269662112260 x^{23} y^{20} v_1^7+2493282220010 x^{22} y^{21} v_1^7+2493282220010 x^{21} y^{22} v_1^7+2269662112260 x^{20} y^{23} v_1^7+1879716343440 x^{19} y^{24} v_1^7+1414686478764 x^{18} y^{25} v_1^7+965802148056 x^{17} y^{26} v_1^7+596625629828 x^{16} y^{27} v_1^7+332424118596 x^{15} y^{28} v_1^7+166366137285 x^{14} y^{29} v_1^7+74398956984 x^{13} y^{30} v_1^7+29538690480 x^{12} y^{31} v_1^7+10328591052 x^{11} y^{32} v_1^7+3148755096 x^{10} y^{33} v_1^7+826327700 x^9 y^{34} v_1^7+183648447 x^8 y^{35} v_1^7+33834617 x^7 y^{36} v_1^7+5021016 x^6 y^{37} v_1^7+576576 x^5 y^{38} v_1^7+48300 x^4 y^{39} v_1^7+2688 x^3 y^{40} v_1^7+84 x^2 y^{41} v_1^7+x y^{42} v_1^7\right) d^{43}}{311954920641940794545461153939587072}+\left(x^{48} y \left(\frac{38996685305289383904141661535767417 v_1^8}{1431224539939740109299169022829364798415105985802133023765456333579694899200}+\frac{7 v_2}{36703368217294125441230211032033660188800}\right)+x y^{48} \left(\frac{38996685305289383904141661535767417 v_1^8}{1431224539939740109299169022829364798415105985802133023765456333579694899200}+\frac{7 v_2}{36703368217294125441230211032033660188800}\right)+x^{47} y^2 \left(\frac{38996943099307284475899246571457401 v_1^8}{13252079073516112123140453915086711096436166535204935405235706792404582400}+\frac{7 v_2}{1529307009053921893384592126334735841200}\right)+x^2 y^{47} \left(\frac{38996943099307284475899246571457401 v_1^8}{13252079073516112123140453915086711096436166535204935405235706792404582400}+\frac{7 v_2}{1529307009053921893384592126334735841200}\right)+x^{46} y^3 \left(\frac{14233900730064304470295710440866110341 v_1^8}{119268711661645009108264085235780399867925498816844418647121361131641241600}+\frac{329 v_2}{4587921027161765680153776379004207523600}\right)+x^3 y^{46} \left(\frac{14233900730064304470295710440866110341 v_1^8}{119268711661645009108264085235780399867925498816844418647121361131641241600}+\frac{329 v_2}{4587921027161765680153776379004207523600}\right)+x^{45} y^4 \left(\frac{641305701667143814162832720622239579093 v_1^8}{238537423323290018216528170471560799735850997633688837294242722263282483200}+\frac{7567 v_2}{9175842054323531360307552758008415047200}\right)+x^4 y^{45} \left(\frac{641305701667143814162832720622239579093 v_1^8}{238537423323290018216528170471560799735850997633688837294242722263282483200}+\frac{7567 v_2}{9175842054323531360307552758008415047200}\right)+x^{44} y^5 \left(\frac{3173069545689294204853228246290276939679 v_1^8}{79512474441096672738842723490520266578616999211229612431414240754427494400}+\frac{7567 v_2}{1019538006035947928923061417556490560800}\right)+x^5 y^{44} \left(\frac{3173069545689294204853228246290276939679 v_1^8}{79512474441096672738842723490520266578616999211229612431414240754427494400}+\frac{7567 v_2}{1019538006035947928923061417556490560800}\right)+x^{43} y^6 \left(\frac{51220818759067443586774797436975775355319 v_1^8}{119268711661645009108264085235780399867925498816844418647121361131641241600}+\frac{83237 v_2}{1529307009053921893384592126334735841200}\right)+x^6 y^{43} \left(\frac{51220818759067443586774797436975775355319 v_1^8}{119268711661645009108264085235780399867925498816844418647121361131641241600}+\frac{83237 v_2}{1529307009053921893384592126334735841200}\right)+x^{42} y^7 \left(\frac{5095155194564786650517067208410182003521397 v_1^8}{1431224539939740109299169022829364798415105985802133023765456333579694899200}+\frac{11891 v_2}{35565279280323764962432375031040368400}\right)+x^7 y^{42} \left(\frac{5095155194564786650517067208410182003521397 v_1^8}{1431224539939740109299169022829364798415105985802133023765456333579694899200}+\frac{11891 v_2}{35565279280323764962432375031040368400}\right)+x^{41} y^8 \left(\frac{5651884355228658507587659129764276858710963 v_1^8}{238537423323290018216528170471560799735850997633688837294242722263282483200}+\frac{83237 v_2}{47420372373765019949909833374720491200}\right)+x^8 y^{41} \left(\frac{5651884355228658507587659129764276858710963 v_1^8}{238537423323290018216528170471560799735850997633688837294242722263282483200}+\frac{83237 v_2}{47420372373765019949909833374720491200}\right)+x^{40} y^9 \left(\frac{10372729960103601362288728802849581579939729 v_1^8}{79512474441096672738842723490520266578616999211229612431414240754427494400}+\frac{3412717 v_2}{426783351363885179549188500372484420800}\right)+x^9 y^{40} \left(\frac{10372729960103601362288728802849581579939729 v_1^8}{79512474441096672738842723490520266578616999211229612431414240754427494400}+\frac{3412717 v_2}{426783351363885179549188500372484420800}\right)+x^{39} y^{10} \left(\frac{9058627011112741288235236219295848287878503 v_1^8}{14908588957705626138533010654472549983490687352105552330890170141455155200}+\frac{3412717 v_2}{106695837840971294887297125093121105200}\right)+x^{10} y^{39} \left(\frac{9058627011112741288235236219295848287878503 v_1^8}{14908588957705626138533010654472549983490687352105552330890170141455155200}+\frac{3412717 v_2}{106695837840971294887297125093121105200}\right)+x^{38} y^{11} \left(\frac{1862182046052373290223020123928365010617121 v_1^8}{764543023472083391719641572024233332486701915492592427225136930331033600}+\frac{310247 v_2}{2735790713871058843264028848541566800}\right)+x^{11} y^{38} \left(\frac{1862182046052373290223020123928365010617121 v_1^8}{764543023472083391719641572024233332486701915492592427225136930331033600}+\frac{310247 v_2}{2735790713871058843264028848541566800}\right)+x^{37} y^{12} \left(\frac{2056488659728579158588530515040658652799771 v_1^8}{241434638991184228964097338533968420785274289102923924386885346420326400}+\frac{310247 v_2}{863933909643492266293903846907863200}\right)+x^{12} y^{37} \left(\frac{2056488659728579158588530515040658652799771 v_1^8}{241434638991184228964097338533968420785274289102923924386885346420326400}+\frac{310247 v_2}{863933909643492266293903846907863200}\right)+x^{36} y^{13} \left(\frac{1566577364534883552577765312327769228475946513 v_1^8}{59634355830822504554132042617890199933962749408422209323560680565820620800}+\frac{11479139 v_2}{11231140825365399461820750009802221600}\right)+x^{13} y^{36} \left(\frac{1566577364534883552577765312327769228475946513 v_1^8}{59634355830822504554132042617890199933962749408422209323560680565820620800}+\frac{11479139 v_2}{11231140825365399461820750009802221600}\right)+x^{35} y^{14} \left(\frac{10584240611714575304735046293361554649672629 v_1^8}{146837441257796256212082591856916466442506000390082386761614479694233600}+\frac{1639877 v_2}{623952268075855525656708333877901200}\right)+x^{14} y^{35} \left(\frac{10584240611714575304735046293361554649672629 v_1^8}{146837441257796256212082591856916466442506000390082386761614479694233600}+\frac{1639877 v_2}{623952268075855525656708333877901200}\right)+x^{34} y^{15} \left(\frac{7046228400679869485882580793231327972254824627 v_1^8}{39756237220548336369421361745260133289308499605614806215707120377213747200}+\frac{11479139 v_2}{1871856804227566576970125001633703600}\right)+x^{15} y^{34} \left(\frac{7046228400679869485882580793231327972254824627 v_1^8}{39756237220548336369421361745260133289308499605614806215707120377213747200}+\frac{11479139 v_2}{1871856804227566576970125001633703600}\right)+x^{33} y^{16} \left(\frac{580221481594428871775722013126015764641988387 v_1^8}{1477011909122538812486242541619571515392266239217887537425651531041996800}+\frac{11479139 v_2}{880873790224737212691823530180566400}\right)+x^{16} y^{33} \left(\frac{580221481594428871775722013126015764641988387 v_1^8}{1477011909122538812486242541619571515392266239217887537425651531041996800}+\frac{11479139 v_2}{880873790224737212691823530180566400}\right)+x^{32} y^{17} \left(\frac{125424627597803049675008158611257741053524262483 v_1^8}{159024948882193345477685446981040533157233998422459224862828481508854988800}+\frac{126270529 v_2}{4991618144606844205253666671023209600}\right)+x^{17} y^{32} \left(\frac{125424627597803049675008158611257741053524262483 v_1^8}{159024948882193345477685446981040533157233998422459224862828481508854988800}+\frac{126270529 v_2}{4991618144606844205253666671023209600}\right)+x^{31} y^{18} \left(\frac{210245464403489535927887174762964595776019957 v_1^8}{145983735203971859373640251206585556753886779457581907768814395509964800}+\frac{126270529 v_2}{2807785206341349865455187502450555400}\right)+x^{18} y^{31} \left(\frac{210245464403489535927887174762964595776019957 v_1^8}{145983735203971859373640251206585556753886779457581907768814395509964800}+\frac{126270529 v_2}{2807785206341349865455187502450555400}\right)+x^{30} y^{19} \left(\frac{286209194049904623470811400997051430289830089681 v_1^8}{119268711661645009108264085235780399867925498816844418647121361131641241600}+\frac{3914386399 v_2}{53347918920485647443648562546560552600}\right)+x^{19} y^{30} \left(\frac{286209194049904623470811400997051430289830089681 v_1^8}{119268711661645009108264085235780399867925498816844418647121361131641241600}+\frac{3914386399 v_2}{53347918920485647443648562546560552600}\right)+x^{29} y^{20} \left(\frac{290884641014423709584405494862271007139125526281 v_1^8}{79512474441096672738842723490520266578616999211229612431414240754427494400}+\frac{3914386399 v_2}{35565279280323764962432375031040368400}\right)+x^{20} y^{29} \left(\frac{290884641014423709584405494862271007139125526281 v_1^8}{79512474441096672738842723490520266578616999211229612431414240754427494400}+\frac{3914386399 v_2}{35565279280323764962432375031040368400}\right)+x^{28} y^{21} \left(\frac{7318832325711768715162946661128368893005838028967 v_1^8}{1431224539939740109299169022829364798415105985802133023765456333579694899200}+\frac{16216743653 v_2}{106695837840971294887297125093121105200}\right)+x^{21} y^{28} \left(\frac{7318832325711768715162946661128368893005838028967 v_1^8}{1431224539939740109299169022829364798415105985802133023765456333579694899200}+\frac{16216743653 v_2}{106695837840971294887297125093121105200}\right)+x^{27} y^{22} \left(\frac{1174451126461785364861997388204190543954818467051 v_1^8}{178903067492467513662396127853670599801888248225266627970682041697461862400}+\frac{10319745961 v_2}{53347918920485647443648562546560552600}\right)+x^{22} y^{27} \left(\frac{1174451126461785364861997388204190543954818467051 v_1^8}{178903067492467513662396127853670599801888248225266627970682041697461862400}+\frac{10319745961 v_2}{53347918920485647443648562546560552600}\right)+x^{26} y^{23} \left(\frac{154039236574250452919875425906122115685698472361 v_1^8}{19878118610274168184710680872630066644654249802807403107853560188606873600}+\frac{1346053821 v_2}{5927546546720627493738729171840061400}\right)+x^{23} y^{26} \left(\frac{154039236574250452919875425906122115685698472361 v_1^8}{19878118610274168184710680872630066644654249802807403107853560188606873600}+\frac{1346053821 v_2}{5927546546720627493738729171840061400}\right)+x^{25} y^{24} \left(\frac{77227960019885867954684861913163565783186136443 v_1^8}{9174516281665000700635698864290799989840422985911109126701643163972403200}+\frac{448684607 v_2}{1823860475914039228842685899027711200}\right)+x^{24} y^{25} \left(\frac{77227960019885867954684861913163565783186136443 v_1^8}{9174516281665000700635698864290799989840422985911109126701643163972403200}+\frac{448684607 v_2}{1823860475914039228842685899027711200}\right)\right) d^{49}+O[d]^{50}$
$(x+y) d+\frac{\left(x^{10} y v_1+5 x^9 y^2 v_1+15 x^8 y^3 v_1+30 x^7 y^4 v_1+42 x^6 y^5 v_1+42 x^5 y^6 v_1+30 x^4 y^7 v_1+15 x^3 y^8 v_1+5 x^2 y^9 v_1+x y^{10} v_1\right) d^{11}}{25937424600}+\frac{\left(x^{20} y v_1^2+15 x^{19} y^2 v_1^2+110 x^{18} y^3 v_1^2+525 x^{17} y^4 v_1^2+1827 x^{16} y^5 v_1^2+4914 x^{15} y^6 v_1^2+10560 x^{14} y^7 v_1^2+18495 x^{13} y^8 v_1^2+26720 x^{12} y^9 v_1^2+32065 x^{11} y^{10} v_1^2+32065 x^{10} y^{11} v_1^2+26720 x^9 y^{12} v_1^2+18495 x^8 y^{13} v_1^2+10560 x^7 y^{14} v_1^2+4914 x^6 y^{15} v_1^2+1827 x^5 y^{16} v_1^2+525 x^4 y^{17} v_1^2+110 x^3 y^{18} v_1^2+15 x^2 y^{19} v_1^2+x y^{20} v_1^2\right) d^{21}}{672749994880685160000}+\frac{\left(x^{30} y v_1^3+30 x^{29} y^2 v_1^3+400 x^{28} y^3 v_1^3+3325 x^{27} y^4 v_1^3+19782 x^{26} y^5 v_1^3+90636 x^{25} y^6 v_1^3+334260 x^{24} y^7 v_1^3+1021275 x^{23} y^8 v_1^3+2636645 x^{22} y^9 v_1^3+5832684 x^{21} y^{10} v_1^3+11167189 x^{20} y^{11} v_1^3+18638700 x^{19} y^{12} v_1^3+27259650 x^{18} y^{13} v_1^3+35058540 x^{17} y^{14} v_1^3+39737331 x^{16} y^{15} v_1^3+39737331 x^{15} y^{16} v_1^3+35058540 x^{14} y^{17} v_1^3+27259650 x^{13} y^{18} v_1^3+18638700 x^{12} y^{19} v_1^3+11167189 x^{11} y^{20} v_1^3+5832684 x^{10} y^{21} v_1^3+2636645 x^9 y^{22} v_1^3+1021275 x^8 y^{23} v_1^3+334260 x^7 y^{24} v_1^3+90636 x^6 y^{25} v_1^3+19782 x^5 y^{26} v_1^3+3325 x^4 y^{27} v_1^3+400 x^3 y^{28} v_1^3+30 x^2 y^{29} v_1^3+x y^{30} v_1^3\right) d^{31}}{17449402266868157333838936000000}+\frac{\left(x^{40} y v_1^4+50 x^{39} y^2 v_1^4+1050 x^{38} y^3 v_1^4+13300 x^{37} y^4 v_1^4+118202 x^{36} y^5 v_1^4+799848 x^{35} y^6 v_1^4+4333500 x^{34} y^7 v_1^4+19438650 x^{33} y^8 v_1^4+73911695 x^{32} y^9 v_1^4+242350108 x^{31} y^{10} v_1^4+694153857 x^{30} y^{11} v_1^4+1754023340 x^{29} y^{12} v_1^4+3940080880 x^{28} y^{13} v_1^4+7915219500 x^{27} y^{14} v_1^4+14287126446 x^{26} y^{15} v_1^4+23256285660 x^{25} y^{16} v_1^4+34235345340 x^{24} y^{17} v_1^4+45673941090 x^{23} y^{18} v_1^4+55306910055 x^{22} y^{19} v_1^4+60845867940 x^{21} y^{20} v_1^4+60845867940 x^{20} y^{21} v_1^4+55306910055 x^{19} y^{22} v_1^4+45673941090 x^{18} y^{23} v_1^4+34235345340 x^{17} y^{24} v_1^4+23256285660 x^{16} y^{25} v_1^4+14287126446 x^{15} y^{26} v_1^4+7915219500 x^{14} y^{27} v_1^4+3940080880 x^{13} y^{28} v_1^4+1754023340 x^{12} y^{29} v_1^4+694153857 x^{11} y^{30} v_1^4+242350108 x^{10} y^{31} v_1^4+73911695 x^9 y^{32} v_1^4+19438650 x^8 y^{33} v_1^4+4333500 x^7 y^{34} v_1^4+799848 x^6 y^{35} v_1^4+118202 x^5 y^{36} v_1^4+13300 x^4 y^{37} v_1^4+1050 x^3 y^{38} v_1^4+50 x^2 y^{39} v_1^4+x y^{40} v_1^4\right) d^{41}}{452592555611961908987384431044225600000000}+\frac{\left(x^{50} y v_1^5+75 x^{49} y^2 v_1^5+2275 x^{48} y^3 v_1^5+40600 x^{47} y^4 v_1^5+499842 x^{46} y^5 v_1^5+4631970 x^{45} y^6 v_1^5+34110450 x^{44} y^7 v_1^5+207046125 x^{43} y^8 v_1^5+1063132070 x^{42} y^9 v_1^5+4707504802 x^{41} y^{10} v_1^5+18240308119 x^{40} y^{11} v_1^5+62555050400 x^{39} y^{12} v_1^5+191605231930 x^{38} y^{13} v_1^5+527986560460 x^{37} y^{14} v_1^5+1316653942774 x^{36} y^{15} v_1^5+2985727390947 x^{35} y^{16} v_1^5+6181319503485 x^{34} y^{17} v_1^5+11721491484395 x^{33} y^{18} v_1^5+20413653094770 x^{32} y^{19} v_1^5+32722572560860 x^{31} y^{20} v_1^5+48365238083812 x^{30} y^{21} v_1^5+66006957723630 x^{29} y^{22} v_1^5+83269626432760 x^{28} y^{23} v_1^5+97177536089200 x^{27} y^{24} v_1^5+104966446824936 x^{26} y^{25} v_1^5+104966446824936 x^{25} y^{26} v_1^5+97177536089200 x^{24} y^{27} v_1^5+83269626432760 x^{23} y^{28} v_1^5+66006957723630 x^{22} y^{29} v_1^5+48365238083812 x^{21} y^{30} v_1^5+32722572560860 x^{20} y^{31} v_1^5+20413653094770 x^{19} y^{32} v_1^5+11721491484395 x^{18} y^{33} v_1^5+6181319503485 x^{17} y^{34} v_1^5+2985727390947 x^{16} y^{35} v_1^5+1316653942774 x^{15} y^{36} v_1^5+527986560460 x^{14} y^{37} v_1^5+191605231930 x^{13} y^{38} v_1^5+62555050400 x^{12} y^{39} v_1^5+18240308119 x^{11} y^{40} v_1^5+4707504802 x^{10} y^{41} v_1^5+1063132070 x^9 y^{42} v_1^5+207046125 x^8 y^{43} v_1^5+34110450 x^7 y^{44} v_1^5+4631970 x^6 y^{45} v_1^5+499842 x^5 y^{46} v_1^5+40600 x^4 y^{47} v_1^5+2275 x^3 y^{48} v_1^5+75 x^2 y^{49} v_1^5+x y^{50} v_1^5\right) d^{51}}{11739085285706568872432346031423500765389760000000000}+\frac{\left(x^{60} y v_1^6+105 x^{59} y^2 v_1^6+4340 x^{58} y^3 v_1^6+103530 x^{57} y^4 v_1^6+1680084 x^{56} y^5 v_1^6+20312754 x^{55} y^6 v_1^6+193710660 x^{54} y^7 v_1^6+1514593080 x^{53} y^8 v_1^6+9982402430 x^{52} y^9 v_1^6+56615997438 x^{51} y^{10} v_1^6+280732659877 x^{50} y^{11} v_1^6+1232274466550 x^{49} y^{12} v_1^6+4836332067105 x^{48} y^{13} v_1^6+17109696497020 x^{47} y^{14} v_1^6+54927036172890 x^{46} y^{15} v_1^6+160900954950960 x^{45} y^{16} v_1^6+432095599759635 x^{44} y^{17} v_1^6+1067955096404625 x^{43} y^{18} v_1^6+2437364192169270 x^{42} y^{19} v_1^6+5151185143538980 x^{41} y^{20} v_1^6+10105431803674350 x^{40} y^{21} v_1^6+18439486163844050 x^{39} y^{22} v_1^6+31350118354387210 x^{38} y^{23} v_1^6+49734561555585060 x^{37} y^{24} v_1^6+73711336128981344 x^{36} y^{25} v_1^6+102164993412262956 x^{35} y^{26} v_1^6+132529409720182545 x^{34} y^{27} v_1^6+161004332684400190 x^{33} y^{28} v_1^6+183264495556558845 x^{32} y^{29} v_1^6+195508719268445492 x^{31} y^{30} v_1^6+195508719268445492 x^{30} y^{31} v_1^6+183264495556558845 x^{29} y^{32} v_1^6+161004332684400190 x^{28} y^{33} v_1^6+132529409720182545 x^{27} y^{34} v_1^6+102164993412262956 x^{26} y^{35} v_1^6+73711336128981344 x^{25} y^{36} v_1^6+49734561555585060 x^{24} y^{37} v_1^6+31350118354387210 x^{23} y^{38} v_1^6+18439486163844050 x^{22} y^{39} v_1^6+10105431803674350 x^{21} y^{40} v_1^6+5151185143538980 x^{20} y^{41} v_1^6+2437364192169270 x^{19} y^{42} v_1^6+1067955096404625 x^{18} y^{43} v_1^6+432095599759635 x^{17} y^{44} v_1^6+160900954950960 x^{16} y^{45} v_1^6+54927036172890 x^{15} y^{46} v_1^6+17109696497020 x^{14} y^{47} v_1^6+4836332067105 x^{13} y^{48} v_1^6+1232274466550 x^{12} y^{49} v_1^6+280732659877 x^{11} y^{50} v_1^6+56615997438 x^{10} y^{51} v_1^6+9982402430 x^9 y^{52} v_1^6+1514593080 x^8 y^{53} v_1^6+193710660 x^7 y^{54} v_1^6+20312754 x^6 y^{55} v_1^6+1680084 x^5 y^{56} v_1^6+103530 x^4 y^{57} v_1^6+4340 x^3 y^{58} v_1^6+105 x^2 y^{59} v_1^6+x y^{60} v_1^6\right) d^{61}}{304481639470983587853420993791156281770339189612096000000000000}+\frac{\left(x^{70} y v_1^7+140 x^{69} y^2 v_1^7+7560 x^{68} y^3 v_1^7+232050 x^{67} y^4 v_1^7+4789554 x^{66} y^5 v_1^7+72997848 x^{65} y^6 v_1^7+871547820 x^{64} y^7 v_1^7+8486975640 x^{63} y^8 v_1^7+69391231910 x^{62} y^9 v_1^7+486841635280 x^{61} y^{10} v_1^7+2980490819157 x^{60} y^{11} v_1^7+16134728562330 x^{59} y^{12} v_1^7+78063177080280 x^{58} y^{13} v_1^7+340514287240200 x^{57} y^{14} v_1^7+1348881327292236 x^{56} y^{15} v_1^7+4881985594593492 x^{55} y^{16} v_1^7+16226754810667905 x^{54} y^{17} v_1^7+49748218947276360 x^{53} y^{18} v_1^7+141208707557022630 x^{52} y^{19} v_1^7+372293798837551500 x^{51} y^{20} v_1^7+914247377198877072 x^{50} y^{21} v_1^7+2096273796314337675 x^{49} y^{22} v_1^7+4497322102613243085 x^{48} y^{23} v_1^7+9044369094117937020 x^{47} y^{24} v_1^7+17077093066841288544 x^{46} y^{25} v_1^7+30315386317682852190 x^{45} y^{26} v_1^7+50657905104266684595 x^{44} y^{27} v_1^7+79765604774875282270 x^{43} y^{28} v_1^7+118454819090401101560 x^{42} y^{29} v_1^7+166028843135960950698 x^{41} y^{30} v_1^7+219775230331639860990 x^{40} y^{31} v_1^7+274889670620351792145 x^{39} y^{32} v_1^7+325008822945815611575 x^{38} y^{33} v_1^7+363342646099235668600 x^{37} y^{34} v_1^7+384154671476102636984 x^{36} y^{35} v_1^7+384154671476102636984 x^{35} y^{36} v_1^7+363342646099235668600 x^{34} y^{37} v_1^7+325008822945815611575 x^{33} y^{38} v_1^7+274889670620351792145 x^{32} y^{39} v_1^7+219775230331639860990 x^{31} y^{40} v_1^7+166028843135960950698 x^{30} y^{41} v_1^7+118454819090401101560 x^{29} y^{42} v_1^7+79765604774875282270 x^{28} y^{43} v_1^7+50657905104266684595 x^{27} y^{44} v_1^7+30315386317682852190 x^{26} y^{45} v_1^7+17077093066841288544 x^{25} y^{46} v_1^7+9044369094117937020 x^{24} y^{47} v_1^7+4497322102613243085 x^{23} y^{48} v_1^7+2096273796314337675 x^{22} y^{49} v_1^7+914247377198877072 x^{21} y^{50} v_1^7+372293798837551500 x^{20} y^{51} v_1^7+141208707557022630 x^{19} y^{52} v_1^7+49748218947276360 x^{18} y^{53} v_1^7+16226754810667905 x^{17} y^{54} v_1^7+4881985594593492 x^{16} y^{55} v_1^7+1348881327292236 x^{15} y^{56} v_1^7+340514287240200 x^{14} y^{57} v_1^7+78063177080280 x^{13} y^{58} v_1^7+16134728562330 x^{12} y^{59} v_1^7+2980490819157 x^{11} y^{60} v_1^7+486841635280 x^{10} y^{61} v_1^7+69391231910 x^9 y^{62} v_1^7+8486975640 x^8 y^{63} v_1^7+871547820 x^7 y^{64} v_1^7+72997848 x^6 y^{65} v_1^7+4789554 x^5 y^{66} v_1^7+232050 x^4 y^{67} v_1^7+7560 x^3 y^{68} v_1^7+140 x^2 y^{69} v_1^7+x y^{70} v_1^7\right) d^{71}}{7897469565863020697785582878515184205234527246988843247961600000000000000}+O[d]^{72}$
$(x+y) d+\frac{\left(x^{12} y v_1+6 x^{11} y^2 v_1+22 x^{10} y^3 v_1+55 x^9 y^4 v_1+99 x^8 y^5 v_1+132 x^7 y^6 v_1+132 x^6 y^7 v_1+99 x^5 y^8 v_1+55 x^4 y^9 v_1+22 x^3 y^{10} v_1+6 x^2 y^{11} v_1+x y^{12} v_1\right) d^{13}}{23298085122480}+\frac{\left(x^{24} y v_1^2+18 x^{23} y^2 v_1^2+160 x^{22} y^3 v_1^2+935 x^{21} y^4 v_1^2+4026 x^{20} y^5 v_1^2+13552 x^{19} y^6 v_1^2+36916 x^{18} y^7 v_1^2+83160 x^{17} y^8 v_1^2+157135 x^{16} y^9 v_1^2+251438 x^{15} y^{10} v_1^2+342876 x^{14} y^{11} v_1^2+400023 x^{13} y^{12} v_1^2+400023 x^{12} y^{13} v_1^2+342876 x^{11} y^{14} v_1^2+251438 x^{10} y^{15} v_1^2+157135 x^9 y^{16} v_1^2+83160 x^8 y^{17} v_1^2+36916 x^7 y^{18} v_1^2+13552 x^6 y^{19} v_1^2+4026 x^5 y^{20} v_1^2+935 x^4 y^{21} v_1^2+160 x^3 y^{22} v_1^2+18 x^2 y^{23} v_1^2+x y^{24} v_1^2\right) d^{25}}{542800770374323916601350400}+\frac{\left(x^{36} y v_1^3+36 x^{35} y^2 v_1^3+580 x^{34} y^3 v_1^3+5865 x^{33} y^4 v_1^3+42735 x^{32} y^5 v_1^3+241472 x^{31} y^6 v_1^3+1106292 x^{30} y^7 v_1^3+4231755 x^{29} y^8 v_1^3+13792790 x^{28} y^9 v_1^3+38871250 x^{27} y^{10} v_1^3+95754126 x^{26} y^{11} v_1^3+207867296 x^{25} y^{12} v_1^3+400144823 x^{24} y^{13} v_1^3+686305428 x^{23} y^{14} v_1^3+1052586400 x^{22} y^{15} v_1^3+1447463215 x^{21} y^{16} v_1^3+1788124800 x^{20} y^{17} v_1^3+1986837776 x^{19} y^{18} v_1^3+1986837776 x^{18} y^{19} v_1^3+1788124800 x^{17} y^{20} v_1^3+1447463215 x^{16} y^{21} v_1^3+1052586400 x^{15} y^{22} v_1^3+686305428 x^{14} y^{23} v_1^3+400144823 x^{13} y^{24} v_1^3+207867296 x^{12} y^{25} v_1^3+95754126 x^{11} y^{26} v_1^3+38871250 x^{10} y^{27} v_1^3+13792790 x^9 y^{28} v_1^3+4231755 x^8 y^{29} v_1^3+1106292 x^7 y^{30} v_1^3+241472 x^6 y^{31} v_1^3+42735 x^5 y^{32} v_1^3+5865 x^4 y^{33} v_1^3+580 x^3 y^{34} v_1^3+36 x^2 y^{35} v_1^3+x y^{36} v_1^3\right) d^{37}}{12646218552728718781958366039317396992000}+\frac{\left(x^{48} y v_1^4+60 x^{47} y^2 v_1^4+1520 x^{46} y^3 v_1^4+23345 x^{45} y^4 v_1^4+252840 x^{44} y^5 v_1^4+2095632 x^{43} y^6 v_1^4+13979460 x^{42} y^7 v_1^4+77623920 x^{41} y^8 v_1^4+367412870 x^{40} y^9 v_1^4+1508522730 x^{39} y^{10} v_1^4+5444152896 x^{38} y^{11} v_1^4+17447684800 x^{37} y^{12} v_1^4+50058940023 x^{36} y^{13} v_1^4+129409294056 x^{35} y^{14} v_1^4+303007605780 x^{34} y^{15} v_1^4+645338624265 x^{33} y^{16} v_1^4+1254504266400 x^{32} y^{17} v_1^4+2232216568736 x^{31} y^{18} v_1^4+3644024003312 x^{30} y^{19} v_1^4+5467822470330 x^{29} y^{20} v_1^4+7552244078390 x^{28} y^{21} v_1^4+9612982040800 x^{27} y^{22} v_1^4+11285445678378 x^{26} y^{23} v_1^4+12226195896096 x^{25} y^{24} v_1^4+12226195896096 x^{24} y^{25} v_1^4+11285445678378 x^{23} y^{26} v_1^4+9612982040800 x^{22} y^{27} v_1^4+7552244078390 x^{21} y^{28} v_1^4+5467822470330 x^{20} y^{29} v_1^4+3644024003312 x^{19} y^{30} v_1^4+2232216568736 x^{18} y^{31} v_1^4+1254504266400 x^{17} y^{32} v_1^4+645338624265 x^{16} y^{33} v_1^4+303007605780 x^{15} y^{34} v_1^4+129409294056 x^{14} y^{35} v_1^4+50058940023 x^{13} y^{36} v_1^4+17447684800 x^{12} y^{37} v_1^4+5444152896 x^{11} y^{38} v_1^4+1508522730 x^{10} y^{39} v_1^4+367412870 x^9 y^{40} v_1^4+77623920 x^8 y^{41} v_1^4+13979460 x^7 y^{42} v_1^4+2095632 x^6 y^{43} v_1^4+252840 x^5 y^{44} v_1^4+23345 x^4 y^{45} v_1^4+1520 x^3 y^{46} v_1^4+60 x^2 y^{47} v_1^4+x y^{48} v_1^4\right) d^{49}}{294632676318959520461375954859390729593955103580160000}+\frac{\left(x^{60} y v_1^5+90 x^{59} y^2 v_1^5+3290 x^{58} y^3 v_1^5+71050 x^{57} y^4 v_1^5+1062810 x^{56} y^5 v_1^5+12015192 x^{55} y^6 v_1^5+108384540 x^{54} y^7 v_1^5+809219565 x^{53} y^8 v_1^5+5132816975 x^{52} y^9 v_1^5+28199171000 x^{51} y^{10} v_1^5+136185763896 x^{50} y^{11} v_1^5+584888367700 x^{49} y^{12} v_1^5+2254638172123 x^{48} y^{13} v_1^5+7859597312760 x^{47} y^{14} v_1^5+24929745852240 x^{46} y^{15} v_1^5+72318357945085 x^{45} y^{16} v_1^5+192685451706300 x^{44} y^{17} v_1^5+473241097899416 x^{43} y^{18} v_1^5+1074663346085560 x^{42} y^{19} v_1^5+2262260819893140 x^{41} y^{20} v_1^5+4424347026604010 x^{40} y^{21} v_1^5+8053879635115600 x^{39} y^{22} v_1^5+13667861399466288 x^{38} y^{23} v_1^5+21652998125142300 x^{37} y^{24} v_1^5+32058637598533196 x^{36} y^{25} v_1^5+44400098962038156 x^{35} y^{26} v_1^5+57565129068931300 x^{34} y^{27} v_1^5+69907698175687950 x^{33} y^{28} v_1^5+79554872774991075 x^{32} y^{29} v_1^5+84860836846109632 x^{31} y^{30} v_1^5+84860836846109632 x^{30} y^{31} v_1^5+79554872774991075 x^{29} y^{32} v_1^5+69907698175687950 x^{28} y^{33} v_1^5+57565129068931300 x^{27} y^{34} v_1^5+44400098962038156 x^{26} y^{35} v_1^5+32058637598533196 x^{25} y^{36} v_1^5+21652998125142300 x^{24} y^{37} v_1^5+13667861399466288 x^{23} y^{38} v_1^5+8053879635115600 x^{22} y^{39} v_1^5+4424347026604010 x^{21} y^{40} v_1^5+2262260819893140 x^{20} y^{41} v_1^5+1074663346085560 x^{19} y^{42} v_1^5+473241097899416 x^{18} y^{43} v_1^5+192685451706300 x^{17} y^{44} v_1^5+72318357945085 x^{16} y^{45} v_1^5+24929745852240 x^{15} y^{46} v_1^5+7859597312760 x^{14} y^{47} v_1^5+2254638172123 x^{13} y^{48} v_1^5+584888367700 x^{12} y^{49} v_1^5+136185763896 x^{11} y^{50} v_1^5+28199171000 x^{10} y^{51} v_1^5+5132816975 x^9 y^{52} v_1^5+809219565 x^8 y^{53} v_1^5+108384540 x^7 y^{54} v_1^5+12015192 x^6 y^{55} v_1^5+1062810 x^5 y^{56} v_1^5+71050 x^4 y^{57} v_1^5+3290 x^3 y^{58} v_1^5+90 x^2 y^{59} v_1^5+x y^{60} v_1^5\right) d^{61}}{6864377172743216214814538279379575217470158050061993080097996800000}+\frac{\left(x^{72} y v_1^6+126 x^{71} y^2 v_1^6+6272 x^{70} y^3 v_1^6+180810 x^{69} y^4 v_1^6+3557988 x^{68} y^5 v_1^6+52339056 x^{67} y^6 v_1^6+609344076 x^{66} y^7 v_1^6+5836308192 x^{65} y^8 v_1^6+47283931695 x^{64} y^9 v_1^6+330816333848 x^{63} y^{10} v_1^6+2030861130480 x^{62} y^{11} v_1^6+11077670875180 x^{61} y^{12} v_1^6+54234478432583 x^{60} y^{13} v_1^6+240293076309540 x^{59} y^{14} v_1^6+970082512669410 x^{58} y^{15} v_1^6+3588867466359770 x^{57} y^{16} v_1^6+12225946956321420 x^{56} y^{17} v_1^6+38509520514259536 x^{55} y^{18} v_1^6+112549591115740240 x^{54} y^{19} v_1^6+306146156539753530 x^{53} y^{20} v_1^6+777078930536999255 x^{52} y^{21} v_1^6+1844785885135910080 x^{51} y^{22} v_1^6+4104279978954844248 x^{50} y^{23} v_1^6+8572236003894059700 x^{49} y^{24} v_1^6+16833640058849689516 x^{48} y^{25} v_1^6+31121885275967916420 x^{47} y^{26} v_1^6+54232685076084426560 x^{46} y^{27} v_1^6+89166420795731917190 x^{45} y^{28} v_1^6+138441130096286327100 x^{44} y^{29} v_1^6+203131569039403553472 x^{43} y^{30} v_1^6+281847348557076533000 x^{42} y^{31} v_1^6+370002789358296203340 x^{41} y^{32} v_1^6+459767532273828073350 x^{40} y^{33} v_1^6+540955339160600071700 x^{39} y^{34} v_1^6+602814232269180132096 x^{38} y^{35} v_1^6+636321543290255902660 x^{37} y^{36} v_1^6+636321543290255902660 x^{36} y^{37} v_1^6+602814232269180132096 x^{35} y^{38} v_1^6+540955339160600071700 x^{34} y^{39} v_1^6+459767532273828073350 x^{33} y^{40} v_1^6+370002789358296203340 x^{32} y^{41} v_1^6+281847348557076533000 x^{31} y^{42} v_1^6+203131569039403553472 x^{30} y^{43} v_1^6+138441130096286327100 x^{29} y^{44} v_1^6+89166420795731917190 x^{28} y^{45} v_1^6+54232685076084426560 x^{27} y^{46} v_1^6+31121885275967916420 x^{26} y^{47} v_1^6+16833640058849689516 x^{25} y^{48} v_1^6+8572236003894059700 x^{24} y^{49} v_1^6+4104279978954844248 x^{23} y^{50} v_1^6+1844785885135910080 x^{22} y^{51} v_1^6+777078930536999255 x^{21} y^{52} v_1^6+306146156539753530 x^{20} y^{53} v_1^6+112549591115740240 x^{19} y^{54} v_1^6+38509520514259536 x^{18} y^{55} v_1^6+12225946956321420 x^{17} y^{56} v_1^6+3588867466359770 x^{16} y^{57} v_1^6+970082512669410 x^{15} y^{58} v_1^6+240293076309540 x^{14} y^{59} v_1^6+54234478432583 x^{13} y^{60} v_1^6+11077670875180 x^{12} y^{61} v_1^6+2030861130480 x^{11} y^{62} v_1^6+330816333848 x^{10} y^{63} v_1^6+47283931695 x^9 y^{64} v_1^6+5836308192 x^8 y^{65} v_1^6+609344076 x^7 y^{66} v_1^6+52339056 x^6 y^{67} v_1^6+3557988 x^5 y^{68} v_1^6+180810 x^4 y^{69} v_1^6+6272 x^3 y^{70} v_1^6+126 x^2 y^{71} v_1^6+x y^{72} v_1^6\right) d^{73}}{159926843683380050663716494059223739138923599849523528021127850226530648064000000}+\frac{\left(x^{84} y v_1^7+168 x^{83} y^2 v_1^7+10920 x^{82} y^3 v_1^7+404670 x^{81} y^4 v_1^7+10113642 x^{80} y^5 v_1^7+187187616 x^{79} y^6 v_1^7+2721890028 x^{78} y^7 v_1^7+32374735965 x^{77} y^8 v_1^7+324267783840 x^{76} y^9 v_1^7+2795251491032 x^{75} y^{10} v_1^7+21089394023880 x^{74} y^{11} v_1^7+141128934022440 x^{73} y^{12} v_1^7+846727723327823 x^{72} y^{13} v_1^7+4594892796281196 x^{71} y^{14} v_1^7+22719241748399808 x^{70} y^{15} v_1^7+102985550115581490 x^{69} y^{16} v_1^7+430226120954124180 x^{68} y^{17} v_1^7+1663808199660842928 x^{67} y^{18} v_1^7+5979662716050990736 x^{66} y^{19} v_1^7+20039033117497187508 x^{65} y^{20} v_1^7+62802657609487339995 x^{64} y^{21} v_1^7+184543426066091279680 x^{63} y^{22} v_1^7+509592793949490565440 x^{62} y^{23} v_1^7+1325020281793686766680 x^{61} y^{24} v_1^7+3249883100605928464776 x^{60} y^{25} v_1^7+7530851992287006452250 x^{59} y^{26} v_1^7+16510538365359116960630 x^{58} y^{27} v_1^7+34289565311011555091860 x^{57} y^{28} v_1^7+67535165894310529697070 x^{56} y^{29} v_1^7+126268751749984740521352 x^{55} y^{30} v_1^7+224306983742929090868480 x^{54} y^{31} v_1^7+378887847928116129232245 x^{53} y^{32} v_1^7+608976122515421047539165 x^{52} y^{33} v_1^7+931915013065557851485680 x^{51} y^{34} v_1^7+1358533430868363708542256 x^{50} y^{35} v_1^7+1887482608471602413816560 x^{49} y^{36} v_1^7+2500264099260704511796880 x^{48} y^{37} v_1^7+3158809886595190016478240 x^{47} y^{38} v_1^7+3807274338451108299620560 x^{46} y^{39} v_1^7+4378762889163210875546450 x^{45} y^{40} v_1^7+4806231405799326136772040 x^{44} y^{41} v_1^7+5035236381763940729380080 x^{43} y^{42} v_1^7+5035236381763940729380080 x^{42} y^{43} v_1^7+4806231405799326136772040 x^{41} y^{44} v_1^7+4378762889163210875546450 x^{40} y^{45} v_1^7+3807274338451108299620560 x^{39} y^{46} v_1^7+3158809886595190016478240 x^{38} y^{47} v_1^7+2500264099260704511796880 x^{37} y^{48} v_1^7+1887482608471602413816560 x^{36} y^{49} v_1^7+1358533430868363708542256 x^{35} y^{50} v_1^7+931915013065557851485680 x^{34} y^{51} v_1^7+608976122515421047539165 x^{33} y^{52} v_1^7+378887847928116129232245 x^{32} y^{53} v_1^7+224306983742929090868480 x^{31} y^{54} v_1^7+126268751749984740521352 x^{30} y^{55} v_1^7+67535165894310529697070 x^{29} y^{56} v_1^7+34289565311011555091860 x^{28} y^{57} v_1^7+16510538365359116960630 x^{27} y^{58} v_1^7+7530851992287006452250 x^{26} y^{59} v_1^7+3249883100605928464776 x^{25} y^{60} v_1^7+1325020281793686766680 x^{24} y^{61} v_1^7+509592793949490565440 x^{23} y^{62} v_1^7+184543426066091279680 x^{22} y^{63} v_1^7+62802657609487339995 x^{21} y^{64} v_1^7+20039033117497187508 x^{20} y^{65} v_1^7+5979662716050990736 x^{19} y^{66} v_1^7+1663808199660842928 x^{18} y^{67} v_1^7+430226120954124180 x^{17} y^{68} v_1^7+102985550115581490 x^{16} y^{69} v_1^7+22719241748399808 x^{15} y^{70} v_1^7+4594892796281196 x^{14} y^{71} v_1^7+846727723327823 x^{13} y^{72} v_1^7+141128934022440 x^{12} y^{73} v_1^7+21089394023880 x^{11} y^{74} v_1^7+2795251491032 x^{10} y^{75} v_1^7+324267783840 x^9 y^{76} v_1^7+32374735965 x^8 y^{77} v_1^7+2721890028 x^7 y^{78} v_1^7+187187616 x^6 y^{79} v_1^7+10113642 x^5 y^{80} v_1^7+404670 x^4 y^{81} v_1^7+10920 x^3 y^{82} v_1^7+168 x^2 y^{83} v_1^7+x y^{84} v_1^7\right) d^{85}}{3725989217504941322007961899785785900850192407535548874905760162472719389445631214878720000000}+O[d]^{86}$
$(x+y) d+\frac{\left(x^{16} y v_1+8 x^{15} y^2 v_1+40 x^{14} y^3 v_1+140 x^{13} y^4 v_1+364 x^{12} y^5 v_1+728 x^{11} y^6 v_1+1144 x^{10} y^7 v_1+1430 x^9 y^8 v_1+1430 x^8 y^9 v_1+1144 x^7 y^{10} v_1+728 x^6 y^{11} v_1+364 x^5 y^{12} v_1+140 x^4 y^{13} v_1+40 x^3 y^{14} v_1+8 x^2 y^{15} v_1+x y^{16} v_1\right) d^{17}}{48661191875666868480}+\frac{\left(x^{32} y v_1^2+24 x^{31} y^2 v_1^2+288 x^{30} y^3 v_1^2+2300 x^{29} y^4 v_1^2+13704 x^{28} y^5 v_1^2+64680 x^{27} y^6 v_1^2+250624 x^{26} y^7 v_1^2+815958 x^{25} y^8 v_1^2+2267980 x^{24} y^9 v_1^2+5444296 x^{23} y^{10} v_1^2+11384256 x^{22} y^{11} v_1^2+20871500 x^{21} y^{12} v_1^2+33715640 x^{20} y^{13} v_1^2+48165240 x^{19} y^{14} v_1^2+61009312 x^{18} y^{15} v_1^2+68635477 x^{17} y^{16} v_1^2+68635477 x^{16} y^{17} v_1^2+61009312 x^{15} y^{18} v_1^2+48165240 x^{14} y^{19} v_1^2+33715640 x^{13} y^{20} v_1^2+20871500 x^{12} y^{21} v_1^2+11384256 x^{11} y^{22} v_1^2+5444296 x^{10} y^{23} v_1^2+2267980 x^9 y^{24} v_1^2+815958 x^8 y^{25} v_1^2+250624 x^7 y^{26} v_1^2+64680 x^6 y^{27} v_1^2+13704 x^5 y^{28} v_1^2+2300 x^4 y^{29} v_1^2+288 x^3 y^{30} v_1^2+24 x^2 y^{31} v_1^2+x y^{32} v_1^2\right) d^{33}}{2367911594760467245746783913569617510400}+\frac{\left(x^{48} y v_1^3+48 x^{47} y^2 v_1^3+1040 x^{46} y^3 v_1^3+14260 x^{45} y^4 v_1^3+142044 x^{44} y^5 v_1^3+1106336 x^{43} y^6 v_1^3+7046688 x^{42} y^7 v_1^3+37811070 x^{41} y^8 v_1^3+174518410 x^{40} y^9 v_1^3+703517936 x^{39} y^{10} v_1^3+2505675120 x^{38} y^{11} v_1^3+7955509380 x^{37} y^{12} v_1^3+22676319260 x^{36} y^{13} v_1^3+58358700480 x^{35} y^{14} v_1^3+136231310432 x^{34} y^{15} v_1^3+289560170145 x^{33} y^{16} v_1^3+562156024582 x^{32} y^{17} v_1^3+999449497456 x^{31} y^{18} v_1^3+1630728924208 x^{30} y^{19} v_1^3+2446127101520 x^{29} y^{20} v_1^3+3378005913280 x^{28} y^{21} v_1^3+4299291620080 x^{27} y^{22} v_1^3+5046999878896 x^{26} y^{23} v_1^3+5467585198608 x^{25} y^{24} v_1^3+5467585198608 x^{24} y^{25} v_1^3+5046999878896 x^{23} y^{26} v_1^3+4299291620080 x^{22} y^{27} v_1^3+3378005913280 x^{21} y^{28} v_1^3+2446127101520 x^{20} y^{29} v_1^3+1630728924208 x^{19} y^{30} v_1^3+999449497456 x^{18} y^{31} v_1^3+562156024582 x^{17} y^{32} v_1^3+289560170145 x^{16} y^{33} v_1^3+136231310432 x^{15} y^{34} v_1^3+58358700480 x^{14} y^{35} v_1^3+22676319260 x^{13} y^{36} v_1^3+7955509380 x^{12} y^{37} v_1^3+2505675120 x^{11} y^{38} v_1^3+703517936 x^{10} y^{39} v_1^3+174518410 x^9 y^{40} v_1^3+37811070 x^8 y^{41} v_1^3+7046688 x^7 y^{42} v_1^3+1106336 x^6 y^{43} v_1^3+142044 x^5 y^{44} v_1^3+14260 x^4 y^{45} v_1^3+1040 x^3 y^{46} v_1^3+48 x^2 y^{47} v_1^3+x y^{48} v_1^3\right) d^{49}}{115225400457255426915909318438635518097264830203341832192000}+\frac{\left(x^{64} y v_1^4+80 x^{63} y^2 v_1^4+2720 x^{62} y^3 v_1^4+56420 x^{61} y^4 v_1^4+830368 x^{60} y^5 v_1^4+9410016 x^{59} y^6 v_1^4+86359680 x^{58} y^7 v_1^4+663918750 x^{57} y^8 v_1^4+4379337160 x^{56} y^9 v_1^4+25227806032 x^{55} y^{10} v_1^4+128644705280 x^{54} y^{11} v_1^4+586856683140 x^{53} y^{12} v_1^4+2415245873600 x^{52} y^{13} v_1^4+9029271945280 x^{51} y^{14} v_1^4+30835755924384 x^{50} y^{15} v_1^4+96651297433845 x^{49} y^{16} v_1^4+279145307451547 x^{48} y^{17} v_1^4+745386936034912 x^{47} y^{18} v_1^4+1845482623326240 x^{46} y^{19} v_1^4+4247056160749480 x^{45} y^{20} v_1^4+9104212636060180 x^{44} y^{21} v_1^4+18212724563456352 x^{43} y^{22} v_1^4+34054923355576752 x^{42} y^{23} v_1^4+59601583445126220 x^{41} y^{24} v_1^4+97752064373195454 x^{40} y^{25} v_1^4+150392838074766656 x^{39} y^{26} v_1^4+217238397716757120 x^{38} y^{27} v_1^4+294826914363810280 x^{37} y^{28} v_1^4+376160912923899220 x^{36} y^{29} v_1^4+451394699026020160 x^{35} y^{30} v_1^4+509640109880342256 x^{34} y^{31} v_1^4+541493034158120895 x^{33} y^{32} v_1^4+541493034158120895 x^{32} y^{33} v_1^4+509640109880342256 x^{31} y^{34} v_1^4+451394699026020160 x^{30} y^{35} v_1^4+376160912923899220 x^{29} y^{36} v_1^4+294826914363810280 x^{28} y^{37} v_1^4+217238397716757120 x^{27} y^{38} v_1^4+150392838074766656 x^{26} y^{39} v_1^4+97752064373195454 x^{25} y^{40} v_1^4+59601583445126220 x^{24} y^{41} v_1^4+34054923355576752 x^{23} y^{42} v_1^4+18212724563456352 x^{22} y^{43} v_1^4+9104212636060180 x^{21} y^{44} v_1^4+4247056160749480 x^{20} y^{45} v_1^4+1845482623326240 x^{19} y^{46} v_1^4+745386936034912 x^{18} y^{47} v_1^4+279145307451547 x^{17} y^{48} v_1^4+96651297433845 x^{16} y^{49} v_1^4+30835755924384 x^{15} y^{50} v_1^4+9029271945280 x^{14} y^{51} v_1^4+2415245873600 x^{13} y^{52} v_1^4+586856683140 x^{12} y^{53} v_1^4+128644705280 x^{11} y^{54} v_1^4+25227806032 x^{10} y^{55} v_1^4+4379337160 x^9 y^{56} v_1^4+663918750 x^8 y^{57} v_1^4+86359680 x^7 y^{58} v_1^4+9410016 x^6 y^{59} v_1^4+830368 x^5 y^{60} v_1^4+56420 x^4 y^{61} v_1^4+2720 x^3 y^{62} v_1^4+80 x^2 y^{63} v_1^4+x y^{64} v_1^4\right) d^{65}}{5607005320601059252700424066162081894326047656441647651984124498554294108160000}+\frac{\left(x^{80} y v_1^5+120 x^{79} y^2 v_1^5+5880 x^{78} y^3 v_1^5+171080 x^{77} y^4 v_1^5+3465000 x^{76} y^5 v_1^5+53300016 x^{75} y^6 v_1^5+657431280 x^{74} y^7 v_1^5+6745158090 x^{73} y^8 v_1^5+59090063890 x^{72} y^9 v_1^5+450676266040 x^{71} y^{10} v_1^5+3037555149720 x^{70} y^{11} v_1^5+18305928389840 x^{69} y^{12} v_1^5+99577481173520 x^{68} y^{13} v_1^5+492691323359520 x^{67} y^{14} v_1^5+2231523666930240 x^{66} y^{15} v_1^5+9301686423521085 x^{65} y^{16} v_1^5+35844416926796872 x^{64} y^{17} v_1^5+128192202675757120 x^{63} y^{18} v_1^5+426903838863994320 x^{62} y^{19} v_1^5+1327648956639123440 x^{61} y^{20} v_1^5+3865608324778112000 x^{60} y^{21} v_1^5+10560780883046951712 x^{59} y^{22} v_1^5+27124753710277966320 x^{58} y^{23} v_1^5+65611089716408175600 x^{57} y^{24} v_1^5+149691036616270101072 x^{56} y^{25} v_1^5+322561856309839488928 x^{55} y^{26} v_1^5+657287686384888703760 x^{54} y^{27} v_1^5+1267921078979977235920 x^{53} y^{28} v_1^5+2317611235217592495680 x^{52} y^{29} v_1^5+4017644198223093498432 x^{51} y^{30} v_1^5+6610182338461006123248 x^{50} y^{31} v_1^5+10328951348698611556620 x^{49} y^{32} v_1^5+15337469109710473030470 x^{48} y^{33} v_1^5+21653406812672467041912 x^{47} y^{34} v_1^5+29077882399339596229560 x^{46} y^{35} v_1^5+37155445757507944831240 x^{45} y^{36} v_1^5+45189345312598966071880 x^{44} y^{37} v_1^5+52324711795476625191720 x^{43} y^{38} v_1^5+57691479214846758218472 x^{42} y^{39} v_1^5+60576115169983945969260 x^{41} y^{40} v_1^5+60576115169983945969260 x^{40} y^{41} v_1^5+57691479214846758218472 x^{39} y^{42} v_1^5+52324711795476625191720 x^{38} y^{43} v_1^5+45189345312598966071880 x^{37} y^{44} v_1^5+37155445757507944831240 x^{36} y^{45} v_1^5+29077882399339596229560 x^{35} y^{46} v_1^5+21653406812672467041912 x^{34} y^{47} v_1^5+15337469109710473030470 x^{33} y^{48} v_1^5+10328951348698611556620 x^{32} y^{49} v_1^5+6610182338461006123248 x^{31} y^{50} v_1^5+4017644198223093498432 x^{30} y^{51} v_1^5+2317611235217592495680 x^{29} y^{52} v_1^5+1267921078979977235920 x^{28} y^{53} v_1^5+657287686384888703760 x^{27} y^{54} v_1^5+322561856309839488928 x^{26} y^{55} v_1^5+149691036616270101072 x^{25} y^{56} v_1^5+65611089716408175600 x^{24} y^{57} v_1^5+27124753710277966320 x^{23} y^{58} v_1^5+10560780883046951712 x^{22} y^{59} v_1^5+3865608324778112000 x^{21} y^{60} v_1^5+1327648956639123440 x^{20} y^{61} v_1^5+426903838863994320 x^{19} y^{62} v_1^5+128192202675757120 x^{18} y^{63} v_1^5+35844416926796872 x^{17} y^{64} v_1^5+9301686423521085 x^{16} y^{65} v_1^5+2231523666930240 x^{15} y^{66} v_1^5+492691323359520 x^{14} y^{67} v_1^5+99577481173520 x^{13} y^{68} v_1^5+18305928389840 x^{12} y^{69} v_1^5+3037555149720 x^{11} y^{70} v_1^5+450676266040 x^{10} y^{71} v_1^5+59090063890 x^9 y^{72} v_1^5+6745158090 x^8 y^{73} v_1^5+657431280 x^7 y^{74} v_1^5+53300016 x^6 y^{75} v_1^5+3465000 x^5 y^{76} v_1^5+171080 x^4 y^{77} v_1^5+5880 x^3 y^{78} v_1^5+120 x^2 y^{79} v_1^5+x y^{80} v_1^5\right) d^{81}}{272843561753653169739400588447619029601620205807005828159401510456412887790837427509381614796800000}+\frac{\left(x^{96} y v_1^6+168 x^{95} y^2 v_1^6+11200 x^{94} y^3 v_1^6+434280 x^{93} y^4 v_1^6+11542608 x^{92} y^5 v_1^6+230286672 x^{91} y^6 v_1^6+3651158016 x^{90} y^7 v_1^6+47820685770 x^{89} y^8 v_1^6+531983512060 x^{88} y^9 v_1^6+5132131172168 x^{87} y^{10} v_1^6+43628047147776 x^{86} y^{11} v_1^6+330973599615568 x^{85} y^{12} v_1^6+2263635632506080 x^{84} y^{13} v_1^6+14074505118396000 x^{83} y^{14} v_1^6+80110451988721440 x^{82} y^{15} v_1^6+419867752865718465 x^{81} y^{16} v_1^6+2036390768816396617 x^{80} y^{17} v_1^6+9178817841859742080 x^{79} y^{18} v_1^6+38591462233965026680 x^{78} y^{19} v_1^6+151834351669102704560 x^{77} y^{20} v_1^6+560591564444820734760 x^{76} y^{21} v_1^6+1947149821692415701792 x^{75} y^{22} v_1^6+6376526346185372754720 x^{74} y^{23} v_1^6+19726567323785947089540 x^{73} y^{24} v_1^6+57751267622051539740906 x^{72} y^{25} v_1^6+160249149117212007825280 x^{71} y^{26} v_1^6+422053198326757279100280 x^{70} y^{27} v_1^6+1056400916888279287112320 x^{69} y^{28} v_1^6+2515823241029292135662960 x^{68} y^{29} v_1^6+5706550323638909643674496 x^{67} y^{30} v_1^6+12340122171073836085513680 x^{66} y^{31} v_1^6+25461830924585967974884965 x^{65} y^{32} v_1^6+50167428665881780195413870 x^{64} y^{33} v_1^6+94454460239824179796203320 x^{63} y^{34} v_1^6+170047106083336898413032720 x^{62} y^{35} v_1^6+292896059631836666057064040 x^{61} y^{36} v_1^6+482927880063027471249703680 x^{60} y^{37} v_1^6+762570023970878339475073320 x^{59} y^{38} v_1^6+1153689250227823819303325520 x^{58} y^{39} v_1^6+1672909949614621642032740100 x^{57} y^{40} v_1^6+2325813341681055831765485760 x^{56} y^{41} v_1^6+3101141947465907134085398056 x^{55} y^{42} v_1^6+3966628821682093042521122000 x^{54} y^{43} v_1^6+4868179754738448042424039720 x^{53} y^{44} v_1^6+5733669595475103292604400160 x^{52} y^{45} v_1^6+6481566000685032815696643320 x^{51} y^{46} v_1^6+7033205932876654464440667216 x^{50} y^{47} v_1^6+7326264631942355547384013770 x^{49} y^{48} v_1^6+7326264631942355547384013770 x^{48} y^{49} v_1^6+7033205932876654464440667216 x^{47} y^{50} v_1^6+6481566000685032815696643320 x^{46} y^{51} v_1^6+5733669595475103292604400160 x^{45} y^{52} v_1^6+4868179754738448042424039720 x^{44} y^{53} v_1^6+3966628821682093042521122000 x^{43} y^{54} v_1^6+3101141947465907134085398056 x^{42} y^{55} v_1^6+2325813341681055831765485760 x^{41} y^{56} v_1^6+1672909949614621642032740100 x^{40} y^{57} v_1^6+1153689250227823819303325520 x^{39} y^{58} v_1^6+762570023970878339475073320 x^{38} y^{59} v_1^6+482927880063027471249703680 x^{37} y^{60} v_1^6+292896059631836666057064040 x^{36} y^{61} v_1^6+170047106083336898413032720 x^{35} y^{62} v_1^6+94454460239824179796203320 x^{34} y^{63} v_1^6+50167428665881780195413870 x^{33} y^{64} v_1^6+25461830924585967974884965 x^{32} y^{65} v_1^6+12340122171073836085513680 x^{31} y^{66} v_1^6+5706550323638909643674496 x^{30} y^{67} v_1^6+2515823241029292135662960 x^{29} y^{68} v_1^6+1056400916888279287112320 x^{28} y^{69} v_1^6+422053198326757279100280 x^{27} y^{70} v_1^6+160249149117212007825280 x^{26} y^{71} v_1^6+57751267622051539740906 x^{25} y^{72} v_1^6+19726567323785947089540 x^{24} y^{73} v_1^6+6376526346185372754720 x^{23} y^{74} v_1^6+1947149821692415701792 x^{22} y^{75} v_1^6+560591564444820734760 x^{21} y^{76} v_1^6+151834351669102704560 x^{20} y^{77} v_1^6+38591462233965026680 x^{19} y^{78} v_1^6+9178817841859742080 x^{18} y^{79} v_1^6+2036390768816396617 x^{17} y^{80} v_1^6+419867752865718465 x^{16} y^{81} v_1^6+80110451988721440 x^{15} y^{82} v_1^6+14074505118396000 x^{14} y^{83} v_1^6+2263635632506080 x^{13} y^{84} v_1^6+330973599615568 x^{12} y^{85} v_1^6+43628047147776 x^{11} y^{86} v_1^6+5132131172168 x^{10} y^{87} v_1^6+531983512060 x^9 y^{88} v_1^6+47820685770 x^8 y^{89} v_1^6+3651158016 x^7 y^{90} v_1^6+230286672 x^6 y^{91} v_1^6+11542608 x^5 y^{92} v_1^6+434280 x^4 y^{93} v_1^6+11200 x^3 y^{94} v_1^6+168 x^2 y^{95} v_1^6+x y^{96} v_1^6\right) d^{97}}{13276892910534879146195360605688794052874914907541207295491720135460127640000557095698908433434715439199487524864000000}+O[d]^{98}$
$(x+y) d+\frac{\left(x^{18} y v_1+9 x^{17} y^2 v_1+51 x^{16} y^3 v_1+204 x^{15} y^4 v_1+612 x^{14} y^5 v_1+1428 x^{13} y^6 v_1+2652 x^{12} y^7 v_1+3978 x^{11} y^8 v_1+4862 x^{10} y^9 v_1+4862 x^9 y^{10} v_1+3978 x^8 y^{11} v_1+2652 x^7 y^{12} v_1+1428 x^6 y^{13} v_1+612 x^5 y^{14} v_1+204 x^4 y^{15} v_1+51 x^3 y^{16} v_1+9 x^2 y^{17} v_1+x y^{18} v_1\right) d^{19}}{104127350297911241532840}+\frac{\left(x^{36} y v_1^2+27 x^{35} y^2 v_1^2+366 x^{34} y^3 v_1^2+3315 x^{33} y^4 v_1^2+22491 x^{32} y^5 v_1^2+121380 x^{31} y^6 v_1^2+540192 x^{30} y^7 v_1^2+2029698 x^{29} y^8 v_1^2+6545000 x^{28} y^9 v_1^2+18330862 x^{27} y^{10} v_1^2+44997912 x^{26} y^{11} v_1^2+97498128 x^{25} y^{12} v_1^2+187497828 x^{24} y^{13} v_1^2+321425460 x^{23} y^{14} v_1^2+492852576 x^{22} y^{15} v_1^2+677672343 x^{21} y^{16} v_1^2+837124668 x^{20} y^{17} v_1^2+930138521 x^{19} y^{18} v_1^2+930138521 x^{18} y^{19} v_1^2+837124668 x^{17} y^{20} v_1^2+677672343 x^{16} y^{21} v_1^2+492852576 x^{15} y^{22} v_1^2+321425460 x^{14} y^{23} v_1^2+187497828 x^{13} y^{24} v_1^2+97498128 x^{12} y^{25} v_1^2+44997912 x^{11} y^{26} v_1^2+18330862 x^{10} y^{27} v_1^2+6545000 x^9 y^{28} v_1^2+2029698 x^8 y^{29} v_1^2+540192 x^7 y^{30} v_1^2+121380 x^6 y^{31} v_1^2+22491 x^5 y^{32} v_1^2+3315 x^4 y^{33} v_1^2+366 x^3 y^{34} v_1^2+27 x^2 y^{35} v_1^2+x y^{36} v_1^2\right) d^{37}}{10842505080063916320800242179638132592798465600}+\frac{\left(x^{54} y v_1^3+54 x^{53} y^2 v_1^3+1320 x^{52} y^3 v_1^3+20475 x^{51} y^4 v_1^3+231336 x^{50} y^5 v_1^3+2049180 x^{49} y^6 v_1^3+14884452 x^{48} y^7 v_1^3+91336410 x^{47} y^8 v_1^3+483524030 x^{46} y^9 v_1^3+2242541400 x^{45} y^{10} v_1^3+9219030912 x^{44} y^{11} v_1^3+33900611472 x^{43} y^{12} v_1^3+112320289620 x^{42} y^{13} v_1^3+337282294320 x^{41} y^{14} v_1^3+922397790384 x^{40} y^{15} v_1^3+2306672148303 x^{39} y^{16} v_1^3+5292614406069 x^{38} y^{17} v_1^3+11174227218000 x^{37} y^{18} v_1^3+21761267352521 x^{36} y^{19} v_1^3+39171118359204 x^{35} y^{20} v_1^3+65285874937638 x^{34} y^{21} v_1^3+100896845028360 x^{33} y^{22} v_1^3+144765359939655 x^{32} y^{23} v_1^3+193020667387380 x^{31} y^{24} v_1^3+239345724907968 x^{30} y^{25} v_1^3+276168188499192 x^{29} y^{26} v_1^3+296625107501800 x^{28} y^{27} v_1^3+296625107501800 x^{27} y^{28} v_1^3+276168188499192 x^{26} y^{29} v_1^3+239345724907968 x^{25} y^{30} v_1^3+193020667387380 x^{24} y^{31} v_1^3+144765359939655 x^{23} y^{32} v_1^3+100896845028360 x^{22} y^{33} v_1^3+65285874937638 x^{21} y^{34} v_1^3+39171118359204 x^{20} y^{35} v_1^3+21761267352521 x^{19} y^{36} v_1^3+11174227218000 x^{18} y^{37} v_1^3+5292614406069 x^{17} y^{38} v_1^3+2306672148303 x^{16} y^{39} v_1^3+922397790384 x^{15} y^{40} v_1^3+337282294320 x^{14} y^{41} v_1^3+112320289620 x^{13} y^{42} v_1^3+33900611472 x^{12} y^{43} v_1^3+9219030912 x^{11} y^{44} v_1^3+2242541400 x^{10} y^{45} v_1^3+483524030 x^9 y^{46} v_1^3+91336410 x^8 y^{47} v_1^3+14884452 x^7 y^{48} v_1^3+2049180 x^6 y^{49} v_1^3+231336 x^5 y^{50} v_1^3+20475 x^4 y^{51} v_1^3+1320 x^3 y^{52} v_1^3+54 x^2 y^{53} v_1^3+x y^{54} v_1^3\right) d^{55}}{1129001324578697586834645174834954139048475361635681120538544010304000}+\frac{\left(x^{72} y v_1^4+90 x^{71} y^2 v_1^4+3450 x^{70} y^3 v_1^4+80850 x^{69} y^4 v_1^4+1347066 x^{68} y^5 v_1^4+17315928 x^{67} y^6 v_1^4+180622620 x^{66} y^7 v_1^4+1581473025 x^{65} y^8 v_1^4+11905273655 x^{64} y^9 v_1^4+78436292792 x^{63} y^{10} v_1^4+458445071448 x^{62} y^{11} v_1^4+2402533480620 x^{61} y^{12} v_1^4+11385746621760 x^{60} y^{13} v_1^4+49133339244720 x^{59} y^{14} v_1^4+194180198819616 x^{58} y^{15} v_1^4+706209892869411 x^{57} y^{16} v_1^4+2373172843438800 x^{56} y^{17} v_1^4+7394378629027600 x^{55} y^{18} v_1^4+21426541509274521 x^{54} y^{19} v_1^4+57890833193400408 x^{53} y^{20} v_1^4+146170722029709960 x^{52} y^{21} v_1^4+345595330733430600 x^{51} y^{22} v_1^4+766464846551414280 x^{50} y^{23} v_1^4+1596994784315685180 x^{49} y^{24} v_1^4+3130349122979634528 x^{48} y^{25} v_1^4+5779382241354191640 x^{47} y^{26} v_1^4+10060702748787286830 x^{46} y^{27} v_1^4+16528593997320826400 x^{45} y^{28} v_1^4+25648094436413424192 x^{44} y^{29} v_1^4+37617444505610018112 x^{43} y^{30} v_1^4+52179228900780435300 x^{42} y^{31} v_1^4+68485382550213880860 x^{41} y^{32} v_1^4+85088000009881241940 x^{40} y^{33} v_1^4+100103593624090762998 x^{39} y^{34} v_1^4+111544040924813387007 x^{38} y^{35} v_1^4+117740948261921832400 x^{37} y^{36} v_1^4+117740948261921832400 x^{36} y^{37} v_1^4+111544040924813387007 x^{35} y^{38} v_1^4+100103593624090762998 x^{34} y^{39} v_1^4+85088000009881241940 x^{33} y^{40} v_1^4+68485382550213880860 x^{32} y^{41} v_1^4+52179228900780435300 x^{31} y^{42} v_1^4+37617444505610018112 x^{30} y^{43} v_1^4+25648094436413424192 x^{29} y^{44} v_1^4+16528593997320826400 x^{28} y^{45} v_1^4+10060702748787286830 x^{27} y^{46} v_1^4+5779382241354191640 x^{26} y^{47} v_1^4+3130349122979634528 x^{25} y^{48} v_1^4+1596994784315685180 x^{24} y^{49} v_1^4+766464846551414280 x^{23} y^{50} v_1^4+345595330733430600 x^{22} y^{51} v_1^4+146170722029709960 x^{21} y^{52} v_1^4+57890833193400408 x^{20} y^{53} v_1^4+21426541509274521 x^{19} y^{54} v_1^4+7394378629027600 x^{18} y^{55} v_1^4+2373172843438800 x^{17} y^{56} v_1^4+706209892869411 x^{16} y^{57} v_1^4+194180198819616 x^{15} y^{58} v_1^4+49133339244720 x^{14} y^{59} v_1^4+11385746621760 x^{13} y^{60} v_1^4+2402533480620 x^{12} y^{61} v_1^4+458445071448 x^{11} y^{62} v_1^4+78436292792 x^{10} y^{63} v_1^4+11905273655 x^9 y^{64} v_1^4+1581473025 x^8 y^{65} v_1^4+180622620 x^7 y^{66} v_1^4+17315928 x^6 y^{67} v_1^4+1347066 x^5 y^{68} v_1^4+80850 x^4 y^{69} v_1^4+3450 x^3 y^{70} v_1^4+90 x^2 y^{71} v_1^4+x y^{72} v_1^4\right) d^{73}}{117559916411211832465947156291978089869364753648489958120108324845192777110539217714383360000}+\frac{\left(x^{90} y v_1^5+135 x^{89} y^2 v_1^5+7455 x^{88} y^3 v_1^5+244860 x^{87} y^4 v_1^5+5607630 x^{86} y^5 v_1^5+97691958 x^{85} y^6 v_1^5+1366882110 x^{84} y^7 v_1^5+15933735180 x^{83} y^8 v_1^5+158849720315 x^{82} y^9 v_1^5+1381003999375 x^{81} y^{10} v_1^5+10627656339573 x^{80} y^{11} v_1^5+73253575744440 x^{79} y^{12} v_1^5+456542091530280 x^{78} y^{13} v_1^5+2592724992056280 x^{77} y^{14} v_1^5+13503501824708520 x^{76} y^{15} v_1^5+64847843560234881 x^{75} y^{16} v_1^5+288466600315063275 x^{74} y^{17} v_1^5+1193312624368732175 x^{73} y^{18} v_1^5+4606259256189140246 x^{72} y^{19} v_1^5+16640424155474305290 x^{71} y^{20} v_1^5+56406652390538075160 x^{70} y^{21} v_1^5+179821307482445476950 x^{69} y^{22} v_1^5+540230387293887602580 x^{68} y^{23} v_1^5+1532249758783660075803 x^{67} y^{24} v_1^5+4109559702663142230993 x^{66} y^{25} v_1^5+10437738627462718274433 x^{65} y^{26} v_1^5+25137949991081153660590 x^{64} y^{27} v_1^5+57474700002155602853680 x^{63} y^{28} v_1^5+124884479133431637332328 x^{62} y^{29} v_1^5+258132207652650207357264 x^{61} y^{30} v_1^5+507989749121323622579664 x^{60} y^{31} v_1^5+952549264963683731301930 x^{59} y^{32} v_1^5+1703127713150266642798770 x^{58} y^{33} v_1^5+2905435613930477436374496 x^{57} y^{34} v_1^5+4731820971291874812809574 x^{56} y^{35} v_1^5+7360728137044020540853604 x^{55} y^{36} v_1^5+10941740636373405304276460 x^{54} y^{37} v_1^5+15548900838965415469442394 x^{53} y^{38} v_1^5+21130657575310364106922620 x^{52} y^{39} v_1^5+27469939745881544581618398 x^{51} y^{40} v_1^5+34169993105250767439675438 x^{50} y^{41} v_1^5+40678614487307378028365250 x^{49} y^{42} v_1^5+46354736027335600770979122 x^{48} y^{43} v_1^5+50568825172079684913072840 x^{47} y^{44} v_1^5+52816339005411327260102320 x^{46} y^{45} v_1^5+52816339005411327260102320 x^{45} y^{46} v_1^5+50568825172079684913072840 x^{44} y^{47} v_1^5+46354736027335600770979122 x^{43} y^{48} v_1^5+40678614487307378028365250 x^{42} y^{49} v_1^5+34169993105250767439675438 x^{41} y^{50} v_1^5+27469939745881544581618398 x^{40} y^{51} v_1^5+21130657575310364106922620 x^{39} y^{52} v_1^5+15548900838965415469442394 x^{38} y^{53} v_1^5+10941740636373405304276460 x^{37} y^{54} v_1^5+7360728137044020540853604 x^{36} y^{55} v_1^5+4731820971291874812809574 x^{35} y^{56} v_1^5+2905435613930477436374496 x^{34} y^{57} v_1^5+1703127713150266642798770 x^{33} y^{58} v_1^5+952549264963683731301930 x^{32} y^{59} v_1^5+507989749121323622579664 x^{31} y^{60} v_1^5+258132207652650207357264 x^{30} y^{61} v_1^5+124884479133431637332328 x^{29} y^{62} v_1^5+57474700002155602853680 x^{28} y^{63} v_1^5+25137949991081153660590 x^{27} y^{64} v_1^5+10437738627462718274433 x^{26} y^{65} v_1^5+4109559702663142230993 x^{25} y^{66} v_1^5+1532249758783660075803 x^{24} y^{67} v_1^5+540230387293887602580 x^{23} y^{68} v_1^5+179821307482445476950 x^{22} y^{69} v_1^5+56406652390538075160 x^{21} y^{70} v_1^5+16640424155474305290 x^{20} y^{71} v_1^5+4606259256189140246 x^{19} y^{72} v_1^5+1193312624368732175 x^{18} y^{73} v_1^5+288466600315063275 x^{17} y^{74} v_1^5+64847843560234881 x^{16} y^{75} v_1^5+13503501824708520 x^{15} y^{76} v_1^5+2592724992056280 x^{14} y^{77} v_1^5+456542091530280 x^{13} y^{78} v_1^5+73253575744440 x^{12} y^{79} v_1^5+10627656339573 x^{11} y^{80} v_1^5+1381003999375 x^{10} y^{81} v_1^5+158849720315 x^9 y^{82} v_1^5+15933735180 x^8 y^{83} v_1^5+1366882110 x^7 y^{84} v_1^5+97691958 x^6 y^{85} v_1^5+5607630 x^5 y^{86} v_1^5+244860 x^4 y^{87} v_1^5+7455 x^3 y^{88} v_1^5+135 x^2 y^{89} v_1^5+x y^{90} v_1^5\right) d^{91}}{12241202597143419055884051809084025138678231837229677887731098112729971513442138735421448044936847094281789542400000}+O[d]^{92}$
$(x+y) d+\frac{\left(x^{22} y v_1+11 x^{21} y^2 v_1+77 x^{20} y^3 v_1+385 x^{19} y^4 v_1+1463 x^{18} y^5 v_1+4389 x^{17} y^6 v_1+10659 x^{16} y^7 v_1+21318 x^{15} y^8 v_1+35530 x^{14} y^9 v_1+49742 x^{13} y^{10} v_1+58786 x^{12} y^{11} v_1+58786 x^{11} y^{12} v_1+49742 x^{10} y^{13} v_1+35530 x^9 y^{14} v_1+21318 x^8 y^{15} v_1+10659 x^7 y^{16} v_1+4389 x^6 y^{17} v_1+1463 x^5 y^{18} v_1+385 x^4 y^{19} v_1+77 x^3 y^{20} v_1+11 x^2 y^{21} v_1+x y^{22} v_1\right) d^{23}}{907846434775996175406740561328}+\frac{\left(x^{44} y v_1^2+33 x^{43} y^2 v_1^2+550 x^{42} y^3 v_1^2+6160 x^{41} y^4 v_1^2+51975 x^{40} y^5 v_1^2+350889 x^{39} y^6 v_1^2+1965612 x^{38} y^7 v_1^2+9357975 x^{37} y^8 v_1^2+38507205 x^{36} y^9 v_1^2+138675680 x^{35} y^{10} v_1^2+441299586 x^{34} y^{11} v_1^2+1250407613 x^{33} y^{12} v_1^2+3174161375 x^{32} y^{13} v_1^2+7255261530 x^{31} y^{14} v_1^2+14994228480 x^{30} y^{15} v_1^2+28114189059 x^{29} y^{16} v_1^2+47959503372 x^{28} y^{17} v_1^2+74603673375 x^{27} y^{18} v_1^2+106015746760 x^{26} y^{19} v_1^2+137820470865 x^{25} y^{20} v_1^2+164071989136 x^{24} y^{21} v_1^2+178987624513 x^{23} y^{22} v_1^2+178987624513 x^{22} y^{23} v_1^2+164071989136 x^{21} y^{24} v_1^2+137820470865 x^{20} y^{25} v_1^2+106015746760 x^{19} y^{26} v_1^2+74603673375 x^{18} y^{27} v_1^2+47959503372 x^{17} y^{28} v_1^2+28114189059 x^{16} y^{29} v_1^2+14994228480 x^{15} y^{30} v_1^2+7255261530 x^{14} y^{31} v_1^2+3174161375 x^{13} y^{32} v_1^2+1250407613 x^{12} y^{33} v_1^2+441299586 x^{11} y^{34} v_1^2+138675680 x^{10} y^{35} v_1^2+38507205 x^9 y^{36} v_1^2+9357975 x^8 y^{37} v_1^2+1965612 x^7 y^{38} v_1^2+350889 x^6 y^{39} v_1^2+51975 x^5 y^{40} v_1^2+6160 x^4 y^{41} v_1^2+550 x^3 y^{42} v_1^2+33 x^2 y^{43} v_1^2+x y^{44} v_1^2\right) d^{45}}{824185149135487077883465900575455073485199725029416529123584}+\frac{\left(x^{66} y v_1^3+66 x^{65} y^2 v_1^3+1980 x^{64} y^3 v_1^3+37840 x^{63} y^4 v_1^3+528759 x^{62} y^5 v_1^3+5814732 x^{61} y^6 v_1^3+52636848 x^{60} y^7 v_1^3+404134335 x^{59} y^8 v_1^3+2687832290 x^{58} y^9 v_1^3+15728102962 x^{57} y^{10} v_1^3+81941469480 x^{56} y^{11} v_1^3+383643931853 x^{55} y^{12} v_1^3+1626283103830 x^{54} y^{13} v_1^3+6280061519160 x^{53} y^{14} v_1^3+22204544929512 x^{52} y^{15} v_1^3+72192885209973 x^{51} y^{16} v_1^3+216626615133291 x^{50} y^{17} v_1^3+601815201265850 x^{49} y^{18} v_1^3+1552155745327110 x^{48} y^{19} v_1^3+3725311609255929 x^{47} y^{20} v_1^3+8337766245085739 x^{46} y^{21} v_1^3+17433690227349240 x^{45} y^{22} v_1^3+34109572910699113 x^{44} y^{23} v_1^3+62534381074937508 x^{43} y^{24} v_1^3+107559273269363322 x^{42} y^{25} v_1^3+173749701297025084 x^{41} y^{26} v_1^3+263842213610257667 x^{40} y^{27} v_1^3+376917495974082932 x^{39} y^{28} v_1^3+506889074423690772 x^{38} y^{29} v_1^3+642059509261747016 x^{37} y^{30} v_1^3+766329098943596837 x^{36} y^{31} v_1^3+862120239442387211 x^{35} y^{32} v_1^3+914369952027071358 x^{34} y^{33} v_1^3+914369952027071358 x^{33} y^{34} v_1^3+862120239442387211 x^{32} y^{35} v_1^3+766329098943596837 x^{31} y^{36} v_1^3+642059509261747016 x^{30} y^{37} v_1^3+506889074423690772 x^{29} y^{38} v_1^3+376917495974082932 x^{28} y^{39} v_1^3+263842213610257667 x^{27} y^{40} v_1^3+173749701297025084 x^{26} y^{41} v_1^3+107559273269363322 x^{25} y^{42} v_1^3+62534381074937508 x^{24} y^{43} v_1^3+34109572910699113 x^{23} y^{44} v_1^3+17433690227349240 x^{22} y^{45} v_1^3+8337766245085739 x^{21} y^{46} v_1^3+3725311609255929 x^{20} y^{47} v_1^3+1552155745327110 x^{19} y^{48} v_1^3+601815201265850 x^{18} y^{49} v_1^3+216626615133291 x^{17} y^{50} v_1^3+72192885209973 x^{16} y^{51} v_1^3+22204544929512 x^{15} y^{52} v_1^3+6280061519160 x^{14} y^{53} v_1^3+1626283103830 x^{13} y^{54} v_1^3+383643931853 x^{12} y^{55} v_1^3+81941469480 x^{11} y^{56} v_1^3+15728102962 x^{10} y^{57} v_1^3+2687832290 x^9 y^{58} v_1^3+404134335 x^8 y^{59} v_1^3+52636848 x^7 y^{60} v_1^3+5814732 x^6 y^{61} v_1^3+528759 x^5 y^{62} v_1^3+37840 x^4 y^{63} v_1^3+1980 x^3 y^{64} v_1^3+66 x^2 y^{65} v_1^3+x y^{66} v_1^3\right) d^{67}}{748233549237974650065756844795091478963241332624802881607797494239789416659248016043159552}+\frac{\left(x^{88} y v_1^4+110 x^{87} y^2 v_1^4+5170 x^{86} y^3 v_1^4+148995 x^{85} y^4 v_1^4+3061674 x^{84} y^5 v_1^4+48678168 x^{83} y^6 v_1^4+629820840 x^{82} y^7 v_1^4+6859797945 x^{81} y^8 v_1^4+64426013795 x^{80} y^9 v_1^4+531136213322 x^{79} y^{10} v_1^4+3896465183338 x^{78} y^{11} v_1^4+25710667623550 x^{77} y^{12} v_1^4+153912545181780 x^{76} y^{13} v_1^4+841805306791680 x^{75} y^{14} v_1^4+4231231078887912 x^{74} y^{15} v_1^4+19641636625066566 x^{73} y^{16} v_1^4+84560125063948545 x^{72} y^{17} v_1^4+338842315457060030 x^{71} y^{18} v_1^4+1267752387190130380 x^{70} y^{19} v_1^4+4440858666774712259 x^{69} y^{20} v_1^4+14599730528504854590 x^{68} y^{21} v_1^4+45143873505605990700 x^{67} y^{22} v_1^4+131540175871849889413 x^{66} y^{23} v_1^4+361798018028662133391 x^{65} y^{24} v_1^4+940782406147790909967 x^{64} y^{25} v_1^4+2315945826372782337052 x^{63} y^{26} v_1^4+5404137437083435622495 x^{62} y^{27} v_1^4+11966681242466437504776 x^{61} y^{28} v_1^4+25171801916331400693968 x^{60} y^{29} v_1^4+50344245892171957861256 x^{59} y^{30} v_1^4+95817234317425449077106 x^{58} y^{31} v_1^4+173669599320568197143440 x^{57} y^{32} v_1^4+299975676832724473595820 x^{56} y^{33} v_1^4+494078499741363256455918 x^{55} y^{34} v_1^4+776409933141778833496456 x^{54} y^{35} v_1^4+1164615666039327769185776 x^{53} y^{36} v_1^4+1668233893404145167323520 x^{52} y^{37} v_1^4+2282846887306466854335204 x^{51} y^{38} v_1^4+2985261690993085010631311 x^{50} y^{39} v_1^4+3731577377312786604630192 x^{49} y^{40} v_1^4+4459690209331106144948322 x^{48} y^{41} v_1^4+5096788916449502297501850 x^{47} y^{42} v_1^4+5570908874116636013252817 x^{46} y^{43} v_1^4+5824132030151118577419240 x^{45} y^{44} v_1^4+5824132030151118577419240 x^{44} y^{45} v_1^4+5570908874116636013252817 x^{43} y^{46} v_1^4+5096788916449502297501850 x^{42} y^{47} v_1^4+4459690209331106144948322 x^{41} y^{48} v_1^4+3731577377312786604630192 x^{40} y^{49} v_1^4+2985261690993085010631311 x^{39} y^{50} v_1^4+2282846887306466854335204 x^{38} y^{51} v_1^4+1668233893404145167323520 x^{37} y^{52} v_1^4+1164615666039327769185776 x^{36} y^{53} v_1^4+776409933141778833496456 x^{35} y^{54} v_1^4+494078499741363256455918 x^{34} y^{55} v_1^4+299975676832724473595820 x^{33} y^{56} v_1^4+173669599320568197143440 x^{32} y^{57} v_1^4+95817234317425449077106 x^{31} y^{58} v_1^4+50344245892171957861256 x^{30} y^{59} v_1^4+25171801916331400693968 x^{29} y^{60} v_1^4+11966681242466437504776 x^{28} y^{61} v_1^4+5404137437083435622495 x^{27} y^{62} v_1^4+2315945826372782337052 x^{26} y^{63} v_1^4+940782406147790909967 x^{25} y^{64} v_1^4+361798018028662133391 x^{24} y^{65} v_1^4+131540175871849889413 x^{23} y^{66} v_1^4+45143873505605990700 x^{22} y^{67} v_1^4+14599730528504854590 x^{21} y^{68} v_1^4+4440858666774712259 x^{20} y^{69} v_1^4+1267752387190130380 x^{19} y^{70} v_1^4+338842315457060030 x^{18} y^{71} v_1^4+84560125063948545 x^{17} y^{72} v_1^4+19641636625066566 x^{16} y^{73} v_1^4+4231231078887912 x^{15} y^{74} v_1^4+841805306791680 x^{14} y^{75} v_1^4+153912545181780 x^{13} y^{76} v_1^4+25710667623550 x^{12} y^{77} v_1^4+3896465183338 x^{11} y^{78} v_1^4+531136213322 x^{10} y^{79} v_1^4+64426013795 x^9 y^{80} v_1^4+6859797945 x^8 y^{81} v_1^4+629820840 x^7 y^{82} v_1^4+48678168 x^6 y^{83} v_1^4+3061674 x^5 y^{84} v_1^4+148995 x^4 y^{85} v_1^4+5170 x^3 y^{86} v_1^4+110 x^2 y^{87} v_1^4+x y^{88} v_1^4\right) d^{89}}{679281160055485075964274644077801605743204618518517079031931371106500152210207104568258722166564227814478665655145005056}+\frac{\left(x^{110} y v_1^5+165 x^{109} y^2 v_1^5+11165 x^{108} y^3 v_1^5+450450 x^{107} y^4 v_1^5+12701304 x^{106} y^5 v_1^5+273067872 x^{105} y^6 v_1^5+4725838920 x^{104} y^7 v_1^5+68295703905 x^{103} y^8 v_1^5+846032402930 x^{102} y^9 v_1^5+9160666723208 x^{101} y^{10} v_1^5+88008041460066 x^{100} y^{11} v_1^5+759111013124100 x^{99} y^{12} v_1^5+5934834875896080 x^{98} y^{13} v_1^5+42385649438064240 x^{97} y^{14} v_1^5+278325097445036664 x^{96} y^{15} v_1^5+1689592221295286550 x^{95} y^{16} v_1^5+9526399008772902795 x^{94} y^{17} v_1^5+50087814916826663515 x^{93} y^{18} v_1^5+246434425401131167585 x^{92} y^{19} v_1^5+1138039215511978083150 x^{91} y^{20} v_1^5+4946102997747076548240 x^{90} y^{21} v_1^5+20279201591561828233500 x^{89} y^{22} v_1^5+78603233291045880879913 x^{88} y^{23} v_1^5+288573653418530225359735 x^{87} y^{24} v_1^5+1005177096302632975161462 x^{86} y^{25} v_1^5+3327132495135081854007864 x^{85} y^{26} v_1^5+10479710140640118901474490 x^{84} y^{27} v_1^5+31451097103162823132743224 x^{83} y^{28} v_1^5+90040380752347859537845680 x^{82} y^{29} v_1^5+246160718302309652973129152 x^{81} y^{30} v_1^5+643289952153255533035523163 x^{80} y^{31} v_1^5+1608398549982459239720916860 x^{79} y^{32} v_1^5+3850708625634839935933946714 x^{78} y^{33} v_1^5+8834472690250247571449501310 x^{77} y^{34} v_1^5+19436616328483629872553627528 x^{76} y^{35} v_1^5+41034021309131155243342571244 x^{75} y^{36} v_1^5+83178738455103498951996606420 x^{74} y^{37} v_1^5+161981931417343775186536208088 x^{73} y^{38} v_1^5+303199933812066935370741742365 x^{72} y^{39} v_1^5+545763612438945588228824659068 x^{71} y^{40} v_1^5+945107300742430769151244936900 x^{70} y^{41} v_1^5+1575183931357521477442388846050 x^{69} y^{42} v_1^5+2527626297963817435136417327970 x^{68} y^{43} v_1^5+3906337375508093876421714878100 x^{67} y^{44} v_1^5+5816108138710200155460339540480 x^{66} y^{45} v_1^5+8344856378434777565610802752174 x^{65} y^{46} v_1^5+11540763917528143483392491974635 x^{64} y^{47} v_1^5+15387689681806690767432413034546 x^{63} y^{48} v_1^5+19784176176636906522720415526970 x^{62} y^{49} v_1^5+24532381437590324659274865712860 x^{61} y^{50} v_1^5+29342654576239872569708307682128 x^{60} y^{51} v_1^5+33856910765620128773426213848320 x^{59} y^{52} v_1^5+37689769696715233775063639058168 x^{58} y^{53} v_1^5+40481605162559636262945778290930 x^{57} y^{54} v_1^5+41953663846200901663463658736044 x^{56} y^{55} v_1^5+41953663846200901663463658736044 x^{55} y^{56} v_1^5+40481605162559636262945778290930 x^{54} y^{57} v_1^5+37689769696715233775063639058168 x^{53} y^{58} v_1^5+33856910765620128773426213848320 x^{52} y^{59} v_1^5+29342654576239872569708307682128 x^{51} y^{60} v_1^5+24532381437590324659274865712860 x^{50} y^{61} v_1^5+19784176176636906522720415526970 x^{49} y^{62} v_1^5+15387689681806690767432413034546 x^{48} y^{63} v_1^5+11540763917528143483392491974635 x^{47} y^{64} v_1^5+8344856378434777565610802752174 x^{46} y^{65} v_1^5+5816108138710200155460339540480 x^{45} y^{66} v_1^5+3906337375508093876421714878100 x^{44} y^{67} v_1^5+2527626297963817435136417327970 x^{43} y^{68} v_1^5+1575183931357521477442388846050 x^{42} y^{69} v_1^5+945107300742430769151244936900 x^{41} y^{70} v_1^5+545763612438945588228824659068 x^{40} y^{71} v_1^5+303199933812066935370741742365 x^{39} y^{72} v_1^5+161981931417343775186536208088 x^{38} y^{73} v_1^5+83178738455103498951996606420 x^{37} y^{74} v_1^5+41034021309131155243342571244 x^{36} y^{75} v_1^5+19436616328483629872553627528 x^{35} y^{76} v_1^5+8834472690250247571449501310 x^{34} y^{77} v_1^5+3850708625634839935933946714 x^{33} y^{78} v_1^5+1608398549982459239720916860 x^{32} y^{79} v_1^5+643289952153255533035523163 x^{31} y^{80} v_1^5+246160718302309652973129152 x^{30} y^{81} v_1^5+90040380752347859537845680 x^{29} y^{82} v_1^5+31451097103162823132743224 x^{28} y^{83} v_1^5+10479710140640118901474490 x^{27} y^{84} v_1^5+3327132495135081854007864 x^{26} y^{85} v_1^5+1005177096302632975161462 x^{25} y^{86} v_1^5+288573653418530225359735 x^{24} y^{87} v_1^5+78603233291045880879913 x^{23} y^{88} v_1^5+20279201591561828233500 x^{22} y^{89} v_1^5+4946102997747076548240 x^{21} y^{90} v_1^5+1138039215511978083150 x^{20} y^{91} v_1^5+246434425401131167585 x^{19} y^{92} v_1^5+50087814916826663515 x^{18} y^{93} v_1^5+9526399008772902795 x^{17} y^{94} v_1^5+1689592221295286550 x^{16} y^{95} v_1^5+278325097445036664 x^{15} y^{96} v_1^5+42385649438064240 x^{14} y^{97} v_1^5+5934834875896080 x^{13} y^{98} v_1^5+759111013124100 x^{12} y^{99} v_1^5+88008041460066 x^{11} y^{100} v_1^5+9160666723208 x^{10} y^{101} v_1^5+846032402930 x^9 y^{102} v_1^5+68295703905 x^8 y^{103} v_1^5+4725838920 x^7 y^{104} v_1^5+273067872 x^6 y^{105} v_1^5+12701304 x^5 y^{106} v_1^5+450450 x^4 y^{107} v_1^5+11165 x^3 y^{108} v_1^5+165 x^2 y^{109} v_1^5+x y^{110} v_1^5\right) d^{111}}{616682979366874950583296254081015978210338470726513345404149282550501984733246078755627851990602960628206769605526051094923886412065775027712838074368}+O[d]^{112}$
$(x+y) d+\frac{\left(x^{28} y v_1+14 x^{27} y^2 v_1+126 x^{26} y^3 v_1+819 x^{25} y^4 v_1+4095 x^{24} y^5 v_1+16380 x^{23} y^6 v_1+53820 x^{22} y^7 v_1+148005 x^{21} y^8 v_1+345345 x^{20} y^9 v_1+690690 x^{19} y^{10} v_1+1193010 x^{18} y^{11} v_1+1789515 x^{17} y^{12} v_1+2340135 x^{16} y^{13} v_1+2674440 x^{15} y^{14} v_1+2674440 x^{14} y^{15} v_1+2340135 x^{13} y^{16} v_1+1789515 x^{12} y^{17} v_1+1193010 x^{11} y^{18} v_1+690690 x^{10} y^{19} v_1+345345 x^9 y^{20} v_1+148005 x^8 y^{21} v_1+53820 x^7 y^{22} v_1+16380 x^6 y^{23} v_1+4095 x^5 y^{24} v_1+819 x^4 y^{25} v_1+126 x^3 y^{26} v_1+14 x^2 y^{27} v_1+x y^{28} v_1\right) d^{29}}{88540901833145211536614766025207452637360}+\frac{\left(x^{56} y v_1^2+42 x^{55} y^2 v_1^2+896 x^{54} y^3 v_1^2+12915 x^{53} y^4 v_1^2+140994 x^{52} y^5 v_1^2+1238328 x^{51} y^6 v_1^2+9075924 x^{50} y^7 v_1^2+56872530 x^{49} y^8 v_1^2+309984675 x^{48} y^9 v_1^2+1488617130 x^{47} y^{10} v_1^2+6361648020 x^{46} y^{11} v_1^2+24388106925 x^{45} y^{12} v_1^2+84422710260 x^{44} y^{13} v_1^2+265331192400 x^{43} y^{14} v_1^2+760618759320 x^{42} y^{15} v_1^2+1996626583350 x^{41} y^{16} v_1^2+4815395314065 x^{40} y^{17} v_1^2+10700879668710 x^{39} y^{18} v_1^2+21964964221200 x^{38} y^{19} v_1^2+41733432365625 x^{37} y^{20} v_1^2+73530333363630 x^{36} y^{21} v_1^2+120322363739760 x^{35} y^{22} v_1^2+183099249185580 x^{34} y^{23} v_1^2+259390603017000 x^{33} y^{24} v_1^2+342395595983259 x^{32} y^{25} v_1^2+421409964287214 x^{31} y^{26} v_1^2+483841070107556 x^{30} y^{27} v_1^2+518401146543811 x^{29} y^{28} v_1^2+518401146543811 x^{28} y^{29} v_1^2+483841070107556 x^{27} y^{30} v_1^2+421409964287214 x^{26} y^{31} v_1^2+342395595983259 x^{25} y^{32} v_1^2+259390603017000 x^{24} y^{33} v_1^2+183099249185580 x^{23} y^{34} v_1^2+120322363739760 x^{22} y^{35} v_1^2+73530333363630 x^{21} y^{36} v_1^2+41733432365625 x^{20} y^{37} v_1^2+21964964221200 x^{19} y^{38} v_1^2+10700879668710 x^{18} y^{39} v_1^2+4815395314065 x^{17} y^{40} v_1^2+1996626583350 x^{16} y^{41} v_1^2+760618759320 x^{15} y^{42} v_1^2+265331192400 x^{14} y^{43} v_1^2+84422710260 x^{13} y^{44} v_1^2+24388106925 x^{12} y^{45} v_1^2+6361648020 x^{11} y^{46} v_1^2+1488617130 x^{10} y^{47} v_1^2+309984675 x^9 y^{48} v_1^2+56872530 x^8 y^{49} v_1^2+9075924 x^7 y^{50} v_1^2+1238328 x^6 y^{51} v_1^2+140994 x^5 y^{52} v_1^2+12915 x^4 y^{53} v_1^2+896 x^3 y^{54} v_1^2+42 x^2 y^{55} v_1^2+x y^{56} v_1^2\right) d^{57}}{7839491297426657080705875253942679356382957331659745963461454183984747619667769600}+\frac{\left(x^{84} y v_1^3+84 x^{83} y^2 v_1^3+3220 x^{82} y^3 v_1^3+78925 x^{81} y^4 v_1^3+1419579 x^{80} y^5 v_1^3+20166048 x^{79} y^6 v_1^3+236664180 x^{78} y^7 v_1^3+2364348285 x^{77} y^8 v_1^3+20538297780 x^{76} y^9 v_1^3+157579680258 x^{75} y^{10} v_1^3+1080768558870 x^{74} y^{11} v_1^3+6689127553290 x^{73} y^{12} v_1^3+37646446663350 x^{72} y^{13} v_1^3+193875628318200 x^{71} y^{14} v_1^3+918438592798800 x^{70} y^{15} v_1^3+4020165470078100 x^{69} y^{16} v_1^3+16321957597395765 x^{68} y^{17} v_1^3+61671429580941600 x^{67} y^{18} v_1^3+217494900854910000 x^{66} y^{19} v_1^3+717774906253568625 x^{65} y^{20} v_1^3+2221757763975361755 x^{64} y^{21} v_1^3+6463415635746610320 x^{63} y^{22} v_1^3+17704321579772509500 x^{62} y^{23} v_1^3+45736423471681999875 x^{61} y^{24} v_1^3+111597215666500062954 x^{60} y^{25} v_1^3+257532457563425970954 x^{59} y^{26} v_1^3+562756594813000932974 x^{58} y^{27} v_1^3+1165710607656648476400 x^{57} y^{28} v_1^3+2291224816209041825011 x^{56} y^{29} v_1^3+4276953474097948180908 x^{55} y^{30} v_1^3+7588143681906323962944 x^{54} y^{31} v_1^3+12804992805612517669215 x^{53} y^{32} v_1^3+20565594765374343495300 x^{52} y^{33} v_1^3+31453262765436480198048 x^{51} y^{34} v_1^3+45831897292815518795352 x^{50} y^{35} v_1^3+63655412980218541307280 x^{49} y^{36} v_1^3+84300411826347100941375 x^{48} y^{37} v_1^3+106484730749981963324400 x^{47} y^{38} v_1^3+128327752452985041495420 x^{46} y^{39} v_1^3+147576915325740877138575 x^{45} y^{40} v_1^3+161974663164368382837600 x^{44} y^{41} v_1^3+169687742363343815083200 x^{43} y^{42} v_1^3+169687742363343815083200 x^{42} y^{43} v_1^3+161974663164368382837600 x^{41} y^{44} v_1^3+147576915325740877138575 x^{40} y^{45} v_1^3+128327752452985041495420 x^{39} y^{46} v_1^3+106484730749981963324400 x^{38} y^{47} v_1^3+84300411826347100941375 x^{37} y^{48} v_1^3+63655412980218541307280 x^{36} y^{49} v_1^3+45831897292815518795352 x^{35} y^{50} v_1^3+31453262765436480198048 x^{34} y^{51} v_1^3+20565594765374343495300 x^{33} y^{52} v_1^3+12804992805612517669215 x^{32} y^{53} v_1^3+7588143681906323962944 x^{31} y^{54} v_1^3+4276953474097948180908 x^{30} y^{55} v_1^3+2291224816209041825011 x^{29} y^{56} v_1^3+1165710607656648476400 x^{28} y^{57} v_1^3+562756594813000932974 x^{27} y^{58} v_1^3+257532457563425970954 x^{26} y^{59} v_1^3+111597215666500062954 x^{25} y^{60} v_1^3+45736423471681999875 x^{24} y^{61} v_1^3+17704321579772509500 x^{23} y^{62} v_1^3+6463415635746610320 x^{22} y^{63} v_1^3+2221757763975361755 x^{21} y^{64} v_1^3+717774906253568625 x^{20} y^{65} v_1^3+217494900854910000 x^{19} y^{66} v_1^3+61671429580941600 x^{18} y^{67} v_1^3+16321957597395765 x^{17} y^{68} v_1^3+4020165470078100 x^{16} y^{69} v_1^3+918438592798800 x^{15} y^{70} v_1^3+193875628318200 x^{14} y^{71} v_1^3+37646446663350 x^{13} y^{72} v_1^3+6689127553290 x^{12} y^{73} v_1^3+1080768558870 x^{11} y^{74} v_1^3+157579680258 x^{10} y^{75} v_1^3+20538297780 x^9 y^{76} v_1^3+2364348285 x^8 y^{77} v_1^3+236664180 x^7 y^{78} v_1^3+20166048 x^6 y^{79} v_1^3+1419579 x^5 y^{80} v_1^3+78925 x^4 y^{81} v_1^3+3220 x^3 y^{82} v_1^3+84 x^2 y^{83} v_1^3+x y^{84} v_1^3\right) d^{85}}{694115629387249834677710669832284697060104036898582009704562070551620237928210615985761592253249914705321901010508832256000}+\frac{\left(x^{112} y v_1^4+140 x^{111} y^2 v_1^4+8400 x^{110} y^3 v_1^4+309925 x^{109} y^4 v_1^4+8175944 x^{108} y^5 v_1^4+167333040 x^{107} y^6 v_1^4+2794469220 x^{106} y^7 v_1^4+39391065450 x^{105} y^8 v_1^4+480100728030 x^{104} y^9 v_1^4+5150627251770 x^{103} y^{10} v_1^4+49309369189080 x^{102} y^{11} v_1^4+425818765660470 x^{101} y^{12} v_1^4+3345930702948540 x^{100} y^{13} v_1^4+24093380649379200 x^{99} y^{14} v_1^4+159934750878701520 x^{98} y^{15} v_1^4+983620514602124910 x^{97} y^{16} v_1^4+5628744893856579075 x^{96} y^{17} v_1^4+30081644196816030000 x^{95} y^{18} v_1^4+150625715884935060000 x^{94} y^{19} v_1^4+708658639565448350625 x^{93} y^{20} v_1^4+3140567161553818057380 x^{92} y^{21} v_1^4+13139744273042622123000 x^{91} y^{22} v_1^4+52005388184487538300500 x^{90} y^{23} v_1^4+195065942115299950626750 x^{89} y^{24} v_1^4+694546351146134324294184 x^{88} y^{25} v_1^4+2351029797875248831274346 x^{87} y^{26} v_1^4+7576103216415059235039200 x^{86} y^{27} v_1^4+23270625589596767156096800 x^{85} y^{28} v_1^4+68209297263289492085557011 x^{84} y^{29} v_1^4+190990309290684675787740536 x^{83} y^{30} v_1^4+511368738825192489884687380 x^{82} y^{31} v_1^4+1310395198232361367847172375 x^{81} y^{32} v_1^4+3216445143074197822695451950 x^{80} y^{33} v_1^4+7568137672260877960466156568 x^{79} y^{34} v_1^4+17082413720714703069096888240 x^{78} y^{35} v_1^4+37011960050294836867738459410 x^{77} y^{36} v_1^4+77024974134809189553420037500 x^{76} y^{37} v_1^4+154050054754349129047726803840 x^{75} y^{38} v_1^4+296250233624577700850709040770 x^{74} y^{39} v_1^4+548063079782384070315267030090 x^{73} y^{40} v_1^4+975819791831103082531997028000 x^{72} y^{41} v_1^4+1672834098541061868861901422600 x^{71} y^{42} v_1^4+2762121588209030245297893930000 x^{70} y^{43} v_1^4+4394284506852664366189998273600 x^{69} y^{44} v_1^4+6737903058084327856311820371675 x^{68} y^{45} v_1^4+9960378562017604286378240677200 x^{67} y^{46} v_1^4+14198837631062929796823669756000 x^{66} y^{47} v_1^4+19523401827011641241490971354625 x^{65} y^{48} v_1^4+25898390242343372680790105717280 x^{64} y^{49} v_1^4+33149939556028570474288965650424 x^{63} y^{50} v_1^4+40949925365362924426125750777000 x^{62} y^{51} v_1^4+48824911033092587966948394506550 x^{61} y^{52} v_1^4+56194708937632501185840432063690 x^{60} y^{53} v_1^4+62438565493722481426544026185984 x^{59} y^{54} v_1^4+66979552079084807822640773866122 x^{58} y^{55} v_1^4+69371678940760492159316378077200 x^{57} y^{56} v_1^4+69371678940760492159316378077200 x^{56} y^{57} v_1^4+66979552079084807822640773866122 x^{55} y^{58} v_1^4+62438565493722481426544026185984 x^{54} y^{59} v_1^4+56194708937632501185840432063690 x^{53} y^{60} v_1^4+48824911033092587966948394506550 x^{52} y^{61} v_1^4+40949925365362924426125750777000 x^{51} y^{62} v_1^4+33149939556028570474288965650424 x^{50} y^{63} v_1^4+25898390242343372680790105717280 x^{49} y^{64} v_1^4+19523401827011641241490971354625 x^{48} y^{65} v_1^4+14198837631062929796823669756000 x^{47} y^{66} v_1^4+9960378562017604286378240677200 x^{46} y^{67} v_1^4+6737903058084327856311820371675 x^{45} y^{68} v_1^4+4394284506852664366189998273600 x^{44} y^{69} v_1^4+2762121588209030245297893930000 x^{43} y^{70} v_1^4+1672834098541061868861901422600 x^{42} y^{71} v_1^4+975819791831103082531997028000 x^{41} y^{72} v_1^4+548063079782384070315267030090 x^{40} y^{73} v_1^4+296250233624577700850709040770 x^{39} y^{74} v_1^4+154050054754349129047726803840 x^{38} y^{75} v_1^4+77024974134809189553420037500 x^{37} y^{76} v_1^4+37011960050294836867738459410 x^{36} y^{77} v_1^4+17082413720714703069096888240 x^{35} y^{78} v_1^4+7568137672260877960466156568 x^{34} y^{79} v_1^4+3216445143074197822695451950 x^{33} y^{80} v_1^4+1310395198232361367847172375 x^{32} y^{81} v_1^4+511368738825192489884687380 x^{31} y^{82} v_1^4+190990309290684675787740536 x^{30} y^{83} v_1^4+68209297263289492085557011 x^{29} y^{84} v_1^4+23270625589596767156096800 x^{28} y^{85} v_1^4+7576103216415059235039200 x^{27} y^{86} v_1^4+2351029797875248831274346 x^{26} y^{87} v_1^4+694546351146134324294184 x^{25} y^{88} v_1^4+195065942115299950626750 x^{24} y^{89} v_1^4+52005388184487538300500 x^{23} y^{90} v_1^4+13139744273042622123000 x^{22} y^{91} v_1^4+3140567161553818057380 x^{21} y^{92} v_1^4+708658639565448350625 x^{20} y^{93} v_1^4+150625715884935060000 x^{19} y^{94} v_1^4+30081644196816030000 x^{18} y^{95} v_1^4+5628744893856579075 x^{17} y^{96} v_1^4+983620514602124910 x^{16} y^{97} v_1^4+159934750878701520 x^{15} y^{98} v_1^4+24093380649379200 x^{14} y^{99} v_1^4+3345930702948540 x^{13} y^{100} v_1^4+425818765660470 x^{12} y^{101} v_1^4+49309369189080 x^{11} y^{102} v_1^4+5150627251770 x^{10} y^{103} v_1^4+480100728030 x^9 y^{104} v_1^4+39391065450 x^8 y^{105} v_1^4+2794469220 x^7 y^{106} v_1^4+167333040 x^6 y^{107} v_1^4+8175944 x^5 y^{108} v_1^4+309925 x^4 y^{109} v_1^4+8400 x^3 y^{110} v_1^4+140 x^2 y^{111} v_1^4+x y^{112} v_1^4\right) d^{113}}{61457623802428291151176307604619059252332654798607748033613016384947475821103119234618268233656008852212155786441632460694245296187948178841811808727081038684160000}+O[d]^{114}$
$(x+y) d+\frac{\left(x^{30} y v_1+15 x^{29} y^2 v_1+145 x^{28} y^3 v_1+1015 x^{27} y^4 v_1+5481 x^{26} y^5 v_1+23751 x^{25} y^6 v_1+84825 x^{24} y^7 v_1+254475 x^{23} y^8 v_1+650325 x^{22} y^9 v_1+1430715 x^{21} y^{10} v_1+2731365 x^{20} y^{11} v_1+4552275 x^{19} y^{12} v_1+6653325 x^{18} y^{13} v_1+8554275 x^{17} y^{14} v_1+9694845 x^{16} y^{15} v_1+9694845 x^{15} y^{16} v_1+8554275 x^{14} y^{17} v_1+6653325 x^{13} y^{18} v_1+4552275 x^{12} y^{19} v_1+2731365 x^{11} y^{20} v_1+1430715 x^{10} y^{21} v_1+650325 x^9 y^{22} v_1+254475 x^8 y^{23} v_1+84825 x^7 y^{24} v_1+23751 x^6 y^{25} v_1+5481 x^5 y^{26} v_1+1015 x^4 y^{27} v_1+145 x^3 y^{28} v_1+15 x^2 y^{29} v_1+x y^{30} v_1\right) d^{31}}{550618520345910837374536871905139185678862400}+\frac{\left(x^{60} y v_1^2+45 x^{59} y^2 v_1^2+1030 x^{58} y^3 v_1^2+15950 x^{57} y^4 v_1^2+187311 x^{56} y^5 v_1^2+1771987 x^{55} y^6 v_1^2+14007580 x^{54} y^7 v_1^2+94805640 x^{53} y^8 v_1^2+558950205 x^{52} y^9 v_1^2+2907971781 x^{51} y^{10} v_1^2+13485145986 x^{50} y^{11} v_1^2+56192660550 x^{49} y^{12} v_1^2+211809758475 x^{48} y^{13} v_1^2+726213440475 x^{47} y^{14} v_1^2+2275478475000 x^{46} y^{15} v_1^2+6542010310470 x^{45} y^{16} v_1^2+17317094670225 x^{44} y^{17} v_1^2+42330682513875 x^{43} y^{18} v_1^2+95801022873150 x^{42} y^{19} v_1^2+201182150764980 x^{41} y^{20} v_1^2+392784200543295 x^{40} y^{21} v_1^2+714153092547225 x^{39} y^{22} v_1^2+1210955244138900 x^{38} y^{23} v_1^2+1917345803304750 x^{37} y^{24} v_1^2+2837671788914781 x^{36} y^{25} v_1^2+3929084015425947 x^{35} y^{26} v_1^2+5093257057034650 x^{34} y^{27} v_1^2+6184669283542220 x^{33} y^{28} v_1^2+7037727115754955 x^{32} y^{29} v_1^2+7506908923471953 x^{31} y^{30} v_1^2+7506908923471953 x^{30} y^{31} v_1^2+7037727115754955 x^{29} y^{32} v_1^2+6184669283542220 x^{28} y^{33} v_1^2+5093257057034650 x^{27} y^{34} v_1^2+3929084015425947 x^{26} y^{35} v_1^2+2837671788914781 x^{25} y^{36} v_1^2+1917345803304750 x^{24} y^{37} v_1^2+1210955244138900 x^{23} y^{38} v_1^2+714153092547225 x^{22} y^{39} v_1^2+392784200543295 x^{21} y^{40} v_1^2+201182150764980 x^{20} y^{41} v_1^2+95801022873150 x^{19} y^{42} v_1^2+42330682513875 x^{18} y^{43} v_1^2+17317094670225 x^{17} y^{44} v_1^2+6542010310470 x^{16} y^{45} v_1^2+2275478475000 x^{15} y^{46} v_1^2+726213440475 x^{14} y^{47} v_1^2+211809758475 x^{13} y^{48} v_1^2+56192660550 x^{12} y^{49} v_1^2+13485145986 x^{11} y^{50} v_1^2+2907971781 x^{10} y^{51} v_1^2+558950205 x^9 y^{52} v_1^2+94805640 x^8 y^{53} v_1^2+14007580 x^7 y^{54} v_1^2+1771987 x^6 y^{55} v_1^2+187311 x^5 y^{56} v_1^2+15950 x^4 y^{57} v_1^2+1030 x^3 y^{58} v_1^2+45 x^2 y^{59} v_1^2+x y^{60} v_1^2\right) d^{61}}{303180754947920226773910663600827932461415648999130050650232813722494944387142158133760000}+\frac{\left(x^{90} y v_1^3+90 x^{89} y^2 v_1^3+3700 x^{88} y^3 v_1^3+97350 x^{87} y^4 v_1^3+1881201 x^{86} y^5 v_1^3+28735868 x^{85} y^6 v_1^3+362943120 x^{84} y^7 v_1^3+3905708400 x^{83} y^8 v_1^3+36578261005 x^{82} y^9 v_1^3+302849712022 x^{81} y^{10} v_1^3+2243560298148 x^{80} y^{11} v_1^3+15013261314870 x^{79} y^{12} v_1^3+91446243902685 x^{78} y^{13} v_1^3+510212429469720 x^{77} y^{14} v_1^3+2621365949752896 x^{76} y^{15} v_1^3+12458030271636726 x^{75} y^{16} v_1^3+54979215351891075 x^{74} y^{17} v_1^3+226067993795843850 x^{73} y^{18} v_1^3+868672829817431100 x^{72} y^{19} v_1^3+3127423369493516940 x^{71} y^{20} v_1^3+10574062271535767235 x^{70} y^{21} v_1^3+33645457744342715700 x^{69} y^{22} v_1^3+100937584188272286000 x^{68} y^{23} v_1^3+285991739212574781750 x^{67} y^{24} v_1^3+766460698761489329871 x^{66} y^{25} v_1^3+1945634933632411417158 x^{65} y^{26} v_1^3+4683941044594343779660 x^{64} y^{27} v_1^3+10706157143742069324300 x^{63} y^{28} v_1^3+23258210487925404287055 x^{62} y^{29} v_1^3+48066975848621425665200 x^{61} y^{30} v_1^3+94583411596131728813153 x^{60} y^{31} v_1^3+177343903780474107279615 x^{59} y^{32} v_1^3+317069409913395717769330 x^{58} y^{33} v_1^3+540883116121990928521750 x^{57} y^{34} v_1^3+880866793042040670421107 x^{56} y^{35} v_1^3+1370237236458623942611797 x^{55} y^{36} v_1^3+2036839137193678688336900 x^{54} y^{37} v_1^3+2894455617223024939238460 x^{53} y^{38} v_1^3+3933490967709545829853365 x^{52} y^{39} v_1^3+5113538258415193052717403 x^{51} y^{40} v_1^3+6360742711888369891790022 x^{50} y^{41} v_1^3+7572312752343844364116050 x^{49} y^{42} v_1^3+8628914531782926505800375 x^{48} y^{43} v_1^3+9413361307416642217625025 x^{47} y^{44} v_1^3+9831732921085387614681000 x^{46} y^{45} v_1^3+9831732921085387614681000 x^{45} y^{46} v_1^3+9413361307416642217625025 x^{44} y^{47} v_1^3+8628914531782926505800375 x^{43} y^{48} v_1^3+7572312752343844364116050 x^{42} y^{49} v_1^3+6360742711888369891790022 x^{41} y^{50} v_1^3+5113538258415193052717403 x^{40} y^{51} v_1^3+3933490967709545829853365 x^{39} y^{52} v_1^3+2894455617223024939238460 x^{38} y^{53} v_1^3+2036839137193678688336900 x^{37} y^{54} v_1^3+1370237236458623942611797 x^{36} y^{55} v_1^3+880866793042040670421107 x^{35} y^{56} v_1^3+540883116121990928521750 x^{34} y^{57} v_1^3+317069409913395717769330 x^{33} y^{58} v_1^3+177343903780474107279615 x^{32} y^{59} v_1^3+94583411596131728813153 x^{31} y^{60} v_1^3+48066975848621425665200 x^{30} y^{61} v_1^3+23258210487925404287055 x^{29} y^{62} v_1^3+10706157143742069324300 x^{28} y^{63} v_1^3+4683941044594343779660 x^{27} y^{64} v_1^3+1945634933632411417158 x^{26} y^{65} v_1^3+766460698761489329871 x^{25} y^{66} v_1^3+285991739212574781750 x^{24} y^{67} v_1^3+100937584188272286000 x^{23} y^{68} v_1^3+33645457744342715700 x^{22} y^{69} v_1^3+10574062271535767235 x^{21} y^{70} v_1^3+3127423369493516940 x^{20} y^{71} v_1^3+868672829817431100 x^{19} y^{72} v_1^3+226067993795843850 x^{18} y^{73} v_1^3+54979215351891075 x^{17} y^{74} v_1^3+12458030271636726 x^{16} y^{75} v_1^3+2621365949752896 x^{15} y^{76} v_1^3+510212429469720 x^{14} y^{77} v_1^3+91446243902685 x^{13} y^{78} v_1^3+15013261314870 x^{12} y^{79} v_1^3+2243560298148 x^{11} y^{80} v_1^3+302849712022 x^{10} y^{81} v_1^3+36578261005 x^9 y^{82} v_1^3+3905708400 x^8 y^{83} v_1^3+362943120 x^7 y^{84} v_1^3+28735868 x^6 y^{85} v_1^3+1881201 x^5 y^{86} v_1^3+97350 x^4 y^{87} v_1^3+3700 x^3 y^{88} v_1^3+90 x^2 y^{89} v_1^3+x y^{90} v_1^3\right) d^{91}}{166936938686780021164194412836731585696526636590945591430985273637170231417266722187258281146889014708329699291814501997463834624000000}+\frac{\left(x^{120} y v_1^4+150 x^{119} y^2 v_1^4+9650 x^{118} y^3 v_1^4+382025 x^{117} y^4 v_1^4+10820586 x^{116} y^5 v_1^4+237933864 x^{115} y^6 v_1^4+4271856600 x^{114} y^7 v_1^4+64779664950 x^{113} y^8 v_1^4+849922943155 x^{112} y^9 v_1^4+9821986675358 x^{111} y^{10} v_1^4+101356334931306 x^{110} y^{11} v_1^4+944112998185175 x^{109} y^{12} v_1^4+8007470613301460 x^{108} y^{13} v_1^4+62282128589223840 x^{107} y^{14} v_1^4+446900549886216288 x^{106} y^{15} v_1^4+2973174173267819634 x^{105} y^{16} v_1^4+18418702050241365285 x^{104} y^{17} v_1^4+106645235395190398830 x^{103} y^{18} v_1^4+578998106814270645810 x^{102} y^{19} v_1^4+2956017768122273810571 x^{101} y^{20} v_1^4+14227611899431043141886 x^{100} y^{21} v_1^4+64704608636976356997000 x^{99} y^{22} v_1^4+278612079108564765447000 x^{98} y^{23} v_1^4+1137951981432518700357000 x^{97} y^{24} v_1^4+4416020148656934046715031 x^{96} y^{25} v_1^4+16307250799205388891595734 x^{95} y^{26} v_1^4+57382047864174666369764650 x^{94} y^{27} v_1^4+192650438272587264882105625 x^{93} y^{28} v_1^4+617833284394991912784832680 x^{92} y^{29} v_1^4+1894736805787157153965818752 x^{91} y^{30} v_1^4+5562063916528734874015571425 x^{90} y^{31} v_1^4+15643482109140847307276074245 x^{89} y^{32} v_1^4+42190314272850380375947181445 x^{88} y^{33} v_1^4+109199001354022988846321217090 x^{87} y^{34} v_1^4+271438398518221614315811490175 x^{86} y^{35} v_1^4+648437544475210315045043344346 x^{85} y^{36} v_1^4+1489655855228133863376694869890 x^{84} y^{37} v_1^4+3292926363907281552593672971320 x^{83} y^{38} v_1^4+7008026707960310500954821720605 x^{82} y^{39} v_1^4+14366459864856894942075451809583 x^{81} y^{40} v_1^4+28382524630338040919676739836423 x^{80} y^{41} v_1^4+54061959249147115996098039427050 x^{79} y^{42} v_1^4+99323143063394116957477609773915 x^{78} y^{43} v_1^4+176072853934832696406425093487660 x^{77} y^{44} v_1^4+301280226564668867396684839778364 x^{76} y^{45} v_1^4+497767340677707567235914476462208 x^{75} y^{46} v_1^4+794309595601192511849436161495475 x^{74} y^{47} v_1^4+1224560635180752902791183587273825 x^{73} y^{48} v_1^4+1824345443657923882972269971756625 x^{72} y^{49} v_1^4+2627057445228151852479563714018778 x^{71} y^{50} v_1^4+3657276056313510012905188928318001 x^{70} y^{51} v_1^4+4923256233586278673844242319825550 x^{69} y^{52} v_1^4+6409522269261453861726201550947510 x^{68} y^{53} v_1^4+8071250267032616893520658372577320 x^{67} y^{54} v_1^4+9832250326664167607719657914471855 x^{66} y^{55} v_1^4+11588009314448446716316668600052731 x^{65} y^{56} v_1^4+13214396587190401893137733950650035 x^{64} y^{57} v_1^4+14581403131004758184636860111557330 x^{63} y^{58} v_1^4+15569972834967602848391769643901325 x^{62} y^{59} v_1^4+16088971929537072870763437443081232 x^{61} y^{60} v_1^4+16088971929537072870763437443081232 x^{60} y^{61} v_1^4+15569972834967602848391769643901325 x^{59} y^{62} v_1^4+14581403131004758184636860111557330 x^{58} y^{63} v_1^4+13214396587190401893137733950650035 x^{57} y^{64} v_1^4+11588009314448446716316668600052731 x^{56} y^{65} v_1^4+9832250326664167607719657914471855 x^{55} y^{66} v_1^4+8071250267032616893520658372577320 x^{54} y^{67} v_1^4+6409522269261453861726201550947510 x^{53} y^{68} v_1^4+4923256233586278673844242319825550 x^{52} y^{69} v_1^4+3657276056313510012905188928318001 x^{51} y^{70} v_1^4+2627057445228151852479563714018778 x^{50} y^{71} v_1^4+1824345443657923882972269971756625 x^{49} y^{72} v_1^4+1224560635180752902791183587273825 x^{48} y^{73} v_1^4+794309595601192511849436161495475 x^{47} y^{74} v_1^4+497767340677707567235914476462208 x^{46} y^{75} v_1^4+301280226564668867396684839778364 x^{45} y^{76} v_1^4+176072853934832696406425093487660 x^{44} y^{77} v_1^4+99323143063394116957477609773915 x^{43} y^{78} v_1^4+54061959249147115996098039427050 x^{42} y^{79} v_1^4+28382524630338040919676739836423 x^{41} y^{80} v_1^4+14366459864856894942075451809583 x^{40} y^{81} v_1^4+7008026707960310500954821720605 x^{39} y^{82} v_1^4+3292926363907281552593672971320 x^{38} y^{83} v_1^4+1489655855228133863376694869890 x^{37} y^{84} v_1^4+648437544475210315045043344346 x^{36} y^{85} v_1^4+271438398518221614315811490175 x^{35} y^{86} v_1^4+109199001354022988846321217090 x^{34} y^{87} v_1^4+42190314272850380375947181445 x^{33} y^{88} v_1^4+15643482109140847307276074245 x^{32} y^{89} v_1^4+5562063916528734874015571425 x^{31} y^{90} v_1^4+1894736805787157153965818752 x^{30} y^{91} v_1^4+617833284394991912784832680 x^{29} y^{92} v_1^4+192650438272587264882105625 x^{28} y^{93} v_1^4+57382047864174666369764650 x^{27} y^{94} v_1^4+16307250799205388891595734 x^{26} y^{95} v_1^4+4416020148656934046715031 x^{25} y^{96} v_1^4+1137951981432518700357000 x^{24} y^{97} v_1^4+278612079108564765447000 x^{23} y^{98} v_1^4+64704608636976356997000 x^{22} y^{99} v_1^4+14227611899431043141886 x^{21} y^{100} v_1^4+2956017768122273810571 x^{20} y^{101} v_1^4+578998106814270645810 x^{19} y^{102} v_1^4+106645235395190398830 x^{18} y^{103} v_1^4+18418702050241365285 x^{17} y^{104} v_1^4+2973174173267819634 x^{16} y^{105} v_1^4+446900549886216288 x^{15} y^{106} v_1^4+62282128589223840 x^{14} y^{107} v_1^4+8007470613301460 x^{13} y^{108} v_1^4+944112998185175 x^{12} y^{109} v_1^4+101356334931306 x^{11} y^{110} v_1^4+9821986675358 x^{10} y^{111} v_1^4+849922943155 x^9 y^{112} v_1^4+64779664950 x^8 y^{113} v_1^4+4271856600 x^7 y^{114} v_1^4+237933864 x^6 y^{115} v_1^4+10820586 x^5 y^{116} v_1^4+382025 x^4 y^{117} v_1^4+9650 x^3 y^{118} v_1^4+150 x^2 y^{119} v_1^4+x y^{120} v_1^4\right) d^{121}}{91918570170790855068883201365380954063377435028860761240036630408218891891815546099416410311462234347374730766239155757472619435802028669390830005419202023345234126051737600000000}+O[d]^{122}$
$(x+y) d+\frac{\left(x^{36} y v_1+18 x^{35} y^2 v_1+210 x^{34} y^3 v_1+1785 x^{33} y^4 v_1+11781 x^{32} y^5 v_1+62832 x^{31} y^6 v_1+278256 x^{30} y^7 v_1+1043460 x^{29} y^8 v_1+3362260 x^{28} y^9 v_1+9414328 x^{27} y^{10} v_1+23107896 x^{26} y^{11} v_1+50067108 x^{25} y^{12} v_1+96282900 x^{24} y^{13} v_1+165056400 x^{23} y^{14} v_1+253086480 x^{22} y^{15} v_1+347993910 x^{21} y^{16} v_1+429874830 x^{20} y^{17} v_1+477638700 x^{19} y^{18} v_1+477638700 x^{18} y^{19} v_1+429874830 x^{17} y^{20} v_1+347993910 x^{16} y^{21} v_1+253086480 x^{15} y^{22} v_1+165056400 x^{14} y^{23} v_1+96282900 x^{13} y^{24} v_1+50067108 x^{12} y^{25} v_1+23107896 x^{11} y^{26} v_1+9414328 x^{10} y^{27} v_1+3362260 x^9 y^{28} v_1+1043460 x^8 y^{29} v_1+278256 x^7 y^{30} v_1+62832 x^6 y^{31} v_1+11781 x^5 y^{32} v_1+1785 x^4 y^{33} v_1+210 x^3 y^{34} v_1+18 x^2 y^{35} v_1+x y^{36} v_1\right) d^{37}}{285273917723723876056171083405292782327767461712708093040}+\frac{\left(x^{72} y v_1^2+54 x^{71} y^2 v_1^2+1488 x^{70} y^3 v_1^2+27825 x^{69} y^4 v_1^2+395766 x^{68} y^5 v_1^2+4548180 x^{67} y^6 v_1^2+43810836 x^{66} y^7 v_1^2+362482857 x^{65} y^8 v_1^2+2621294005 x^{64} y^9 v_1^2+16785695960 x^{63} y^{10} v_1^2+96159366576 x^{62} y^{11} v_1^2+496873461084 x^{61} y^{12} v_1^2+2331579446448 x^{60} y^{13} v_1^2+9992648398320 x^{59} y^{14} v_1^2+39304670119872 x^{58} y^{15} v_1^2+142479777178446 x^{57} y^{16} v_1^2+477726741590796 x^{56} y^{17} v_1^2+1486261451476732 x^{55} y^{18} v_1^2+4302336258229240 x^{54} y^{19} v_1^2+11616308327093778 x^{53} y^{20} v_1^2+29317349935421064 x^{52} y^{21} v_1^2+69295554645899904 x^{51} y^{22} v_1^2+153655360466834448 x^{50} y^{23} v_1^2+320115334402188000 x^{49} y^{24} v_1^2+627426055478355588 x^{48} y^{25} v_1^2+1158325025521610520 x^{47} y^{26} v_1^2+2016343562954440048 x^{46} y^{27} v_1^2+3312564424857085196 x^{45} y^{28} v_1^2+5140186176503417040 x^{44} y^{29} v_1^2+7538939725538623248 x^{43} y^{30} v_1^2+10457238974134282176 x^{42} y^{31} v_1^2+13725126153551257137 x^{41} y^{32} v_1^2+17052429463503078834 x^{40} y^{33} v_1^2+20061681721768328250 x^{39} y^{34} v_1^2+22354445347113280068 x^{38} y^{35} v_1^2+23596358977508462295 x^{37} y^{36} v_1^2+23596358977508462295 x^{36} y^{37} v_1^2+22354445347113280068 x^{35} y^{38} v_1^2+20061681721768328250 x^{34} y^{39} v_1^2+17052429463503078834 x^{33} y^{40} v_1^2+13725126153551257137 x^{32} y^{41} v_1^2+10457238974134282176 x^{31} y^{42} v_1^2+7538939725538623248 x^{30} y^{43} v_1^2+5140186176503417040 x^{29} y^{44} v_1^2+3312564424857085196 x^{28} y^{45} v_1^2+2016343562954440048 x^{27} y^{46} v_1^2+1158325025521610520 x^{26} y^{47} v_1^2+627426055478355588 x^{25} y^{48} v_1^2+320115334402188000 x^{24} y^{49} v_1^2+153655360466834448 x^{23} y^{50} v_1^2+69295554645899904 x^{22} y^{51} v_1^2+29317349935421064 x^{21} y^{52} v_1^2+11616308327093778 x^{20} y^{53} v_1^2+4302336258229240 x^{19} y^{54} v_1^2+1486261451476732 x^{18} y^{55} v_1^2+477726741590796 x^{17} y^{56} v_1^2+142479777178446 x^{16} y^{57} v_1^2+39304670119872 x^{15} y^{58} v_1^2+9992648398320 x^{14} y^{59} v_1^2+2331579446448 x^{13} y^{60} v_1^2+496873461084 x^{12} y^{61} v_1^2+96159366576 x^{11} y^{62} v_1^2+16785695960 x^{10} y^{63} v_1^2+2621294005 x^9 y^{64} v_1^2+362482857 x^8 y^{65} v_1^2+43810836 x^7 y^{66} v_1^2+4548180 x^6 y^{67} v_1^2+395766 x^5 y^{68} v_1^2+27825 x^4 y^{69} v_1^2+1488 x^3 y^{70} v_1^2+54 x^2 y^{71} v_1^2+x y^{72} v_1^2\right) d^{73}}{81381208133441979421709122744091225498491936628940230588178032463065639898518529161784440247697968764713296441600}+\frac{\left(x^{108} y v_1^3+108 x^{107} y^2 v_1^3+5340 x^{106} y^3 v_1^3+169335 x^{105} y^4 v_1^3+3951801 x^{104} y^5 v_1^3+73046064 x^{103} y^6 v_1^3+1118631492 x^{102} y^7 v_1^3+14625034380 x^{101} y^8 v_1^3+166746679825 x^{100} y^9 v_1^3+1684252494210 x^{99} y^{10} v_1^3+15254431814466 x^{98} y^{11} v_1^3+125074733279223 x^{97} y^{12} v_1^3+935581512376035 x^{96} y^{13} v_1^3+6425408733262560 x^{95} y^{14} v_1^3+40733559980782752 x^{94} y^{15} v_1^3+239452144664277114 x^{93} y^{16} v_1^3+1310421812257930302 x^{92} y^{17} v_1^3+6699197746325342720 x^{91} y^{18} v_1^3+32089933647605923320 x^{90} y^{19} v_1^3+144416317722553748718 x^{89} y^{20} v_1^3+612079425793139403726 x^{88} y^{21} v_1^3+2448386998727203514808 x^{87} y^{22} v_1^3+9261443607067714912200 x^{86} y^{23} v_1^3+33187159707327047290050 x^{85} y^{24} v_1^3+112836970430967439141758 x^{84} y^{25} v_1^3+364551370486612632683892 x^{83} y^{26} v_1^3+1120659933024631417875716 x^{82} y^{27} v_1^3+3281935973565131152292650 x^{81} y^{28} v_1^3+9166791824971542825337890 x^{80} y^{29} v_1^3+24444785738863839739524288 x^{79} y^{30} v_1^3+62294787017569404438231168 x^{78} y^{31} v_1^3+151843557080451576869445609 x^{77} y^{32} v_1^3+354301650240149809531785255 x^{76} y^{33} v_1^3+791968414716134237192318820 x^{75} y^{34} v_1^3+1697075196746161569668248968 x^{74} y^{35} v_1^3+3488432372463468870715418507 x^{73} y^{36} v_1^3+6882582812510770533244287998 x^{72} y^{37} v_1^3+13040683246059063199576141536 x^{71} y^{38} v_1^3+23740731057758950623560790948 x^{70} y^{39} v_1^3+41546279368130593054734460389 x^{69} y^{40} v_1^3+69919348218627831538348229013 x^{68} y^{41} v_1^3+113202754269188013845745059814 x^{67} y^{42} v_1^3+176385686892087705485180815794 x^{66} y^{43} v_1^3+264578530343271744404208924477 x^{65} y^{44} v_1^3+382168988276927306341524167536 x^{64} y^{45} v_1^3+531713374996002161077949742352 x^{63} y^{46} v_1^3+712722183506437817511762779088 x^{62} y^{47} v_1^3+920599487029776273550632763416 x^{61} y^{48} v_1^3+1146052422629225271585000503148 x^{60} y^{49} v_1^3+1375262907155223978464572102488 x^{59} y^{50} v_1^3+1590990422003171533590792930216 x^{58} y^{51} v_1^3+1774566239926643676361380094140 x^{57} y^{52} v_1^3+1908495767468288624445145323864 x^{56} y^{53} v_1^3+1979180795893043861896084322792 x^{55} y^{54} v_1^3+1979180795893043861896084322792 x^{54} y^{55} v_1^3+1908495767468288624445145323864 x^{53} y^{56} v_1^3+1774566239926643676361380094140 x^{52} y^{57} v_1^3+1590990422003171533590792930216 x^{51} y^{58} v_1^3+1375262907155223978464572102488 x^{50} y^{59} v_1^3+1146052422629225271585000503148 x^{49} y^{60} v_1^3+920599487029776273550632763416 x^{48} y^{61} v_1^3+712722183506437817511762779088 x^{47} y^{62} v_1^3+531713374996002161077949742352 x^{46} y^{63} v_1^3+382168988276927306341524167536 x^{45} y^{64} v_1^3+264578530343271744404208924477 x^{44} y^{65} v_1^3+176385686892087705485180815794 x^{43} y^{66} v_1^3+113202754269188013845745059814 x^{42} y^{67} v_1^3+69919348218627831538348229013 x^{41} y^{68} v_1^3+41546279368130593054734460389 x^{40} y^{69} v_1^3+23740731057758950623560790948 x^{39} y^{70} v_1^3+13040683246059063199576141536 x^{38} y^{71} v_1^3+6882582812510770533244287998 x^{37} y^{72} v_1^3+3488432372463468870715418507 x^{36} y^{73} v_1^3+1697075196746161569668248968 x^{35} y^{74} v_1^3+791968414716134237192318820 x^{34} y^{75} v_1^3+354301650240149809531785255 x^{33} y^{76} v_1^3+151843557080451576869445609 x^{32} y^{77} v_1^3+62294787017569404438231168 x^{31} y^{78} v_1^3+24444785738863839739524288 x^{30} y^{79} v_1^3+9166791824971542825337890 x^{29} y^{80} v_1^3+3281935973565131152292650 x^{28} y^{81} v_1^3+1120659933024631417875716 x^{27} y^{82} v_1^3+364551370486612632683892 x^{26} y^{83} v_1^3+112836970430967439141758 x^{25} y^{84} v_1^3+33187159707327047290050 x^{24} y^{85} v_1^3+9261443607067714912200 x^{23} y^{86} v_1^3+2448386998727203514808 x^{22} y^{87} v_1^3+612079425793139403726 x^{21} y^{88} v_1^3+144416317722553748718 x^{20} y^{89} v_1^3+32089933647605923320 x^{19} y^{90} v_1^3+6699197746325342720 x^{18} y^{91} v_1^3+1310421812257930302 x^{17} y^{92} v_1^3+239452144664277114 x^{16} y^{93} v_1^3+40733559980782752 x^{15} y^{94} v_1^3+6425408733262560 x^{14} y^{95} v_1^3+935581512376035 x^{13} y^{96} v_1^3+125074733279223 x^{12} y^{97} v_1^3+15254431814466 x^{11} y^{98} v_1^3+1684252494210 x^{10} y^{99} v_1^3+166746679825 x^9 y^{100} v_1^3+14625034380 x^8 y^{101} v_1^3+1118631492 x^7 y^{102} v_1^3+73046064 x^6 y^{103} v_1^3+3951801 x^5 y^{104} v_1^3+169335 x^4 y^{105} v_1^3+5340 x^3 y^{106} v_1^3+108 x^2 y^{107} v_1^3+x y^{108} v_1^3\right) d^{109}}{23215936073316775550332981477719318135577484402350821653340090906487298632035840558568226194599065411705918224040802120601180792919665969354792666983864726824953726464000}+\frac{\left(x^{144} y v_1^4+180 x^{143} y^2 v_1^4+13920 x^{142} y^3 v_1^4+663495 x^{141} y^4 v_1^4+22662360 x^{140} y^5 v_1^4+601834464 x^{139} y^6 v_1^4+13069344420 x^{138} y^7 v_1^4+240071225625 x^{137} y^8 v_1^4+3821164225450 x^{136} y^9 v_1^4+53652085960330 x^{135} y^{10} v_1^4+673711850418516 x^{134} y^{11} v_1^4+7648190396285985 x^{133} y^{12} v_1^4+79182452489763420 x^{132} y^{13} v_1^4+753002817922460520 x^{131} y^{14} v_1^4+6616958169836937960 x^{130} y^{15} v_1^4+54002237274589398039 x^{129} y^{16} v_1^4+411092104660612774245 x^{128} y^{17} v_1^4+2930020830888460626240 x^{127} y^{18} v_1^4+19616966013796790109240 x^{126} y^{19} v_1^4+123731302204642331436930 x^{125} y^{20} v_1^4+737107925881997493194976 x^{124} y^{21} v_1^4+4157056696515440346977400 x^{123} y^{22} v_1^4+22240477690189640005269600 x^{122} y^{23} v_1^4+113088948751504663740743850 x^{121} y^{24} v_1^4+547463348927713539944341992 x^{120} y^{25} v_1^4+2527118469498395258529646932 x^{119} y^{26} v_1^4+11139161321796322252344838120 x^{118} y^{27} v_1^4+46946890363543780337462681870 x^{117} y^{28} v_1^4+189415586534398154283623054400 x^{116} y^{29} v_1^4+732431379385411727069748667968 x^{115} y^{30} v_1^4+2717146444119996556921247805888 x^{114} y^{31} v_1^4+9679986050734568185608814754085 x^{113} y^{32} v_1^4+33146973202650428179318503518940 x^{112} y^{33} v_1^4+109190821341851420724933439204740 x^{111} y^{34} v_1^4+346292587616496966174930004012572 x^{110} y^{35} v_1^4+1058119728371668749003379061012477 x^{109} y^{36} v_1^4+3117170406704755582158866153757187 x^{108} y^{37} v_1^4+8859339459738867187304187592083012 x^{107} y^{38} v_1^4+24306416617450513888221086954454300 x^{106} y^{39} v_1^4+64412045582523229934378935163750133 x^{105} y^{40} v_1^4+164957747630688197728070274742765203 x^{104} y^{41} v_1^4+408466916859696473086092621288788238 x^{103} y^{42} v_1^4+978420930724029606689276182511547048 x^{102} y^{43} v_1^4+2268157876711508067869611915619774175 x^{101} y^{44} v_1^4+5090754727677039718145768608201250187 x^{100} y^{45} v_1^4+11066858635359113513710353341981417052 x^{99} y^{46} v_1^4+23311043370180741758721324195064127202 x^{98} y^{47} v_1^4+47593381134718501453832279304423735252 x^{97} y^{48} v_1^4+94215469922944149997015454447857120185 x^{96} y^{49} v_1^4+180893703627315675149491854687954011256 x^{95} y^{50} v_1^4+336958861288931385516918901856008050336 x^{94} y^{51} v_1^4+609117943335326821437923442127275539388 x^{93} y^{52} v_1^4+1068829600591239057915545437056142444458 x^{92} y^{53} v_1^4+1820968951134625116783962776756035717280 x^{91} y^{54} v_1^4+3012875902947378716379061783530332397064 x^{90} y^{55} v_1^4+4842121988788211561597350526042384299524 x^{89} y^{56} v_1^4+7560506264970194818335611124439712006802 x^{88} y^{57} v_1^4+11471112955338872214411288593606282396952 x^{87} y^{58} v_1^4+16915030969417328711236112770913383335480 x^{86} y^{59} v_1^4+24244877723977556895459584406430458576516 x^{85} y^{60} v_1^4+33783846009741785278720859870661943572426 x^{84} y^{61} v_1^4+45771662336491914988897513832581736523864 x^{83} y^{62} v_1^4+60302348793052807245166317997830896071204 x^{82} y^{63} v_1^4+77262384391481076835300733053253355605505 x^{81} y^{64} v_1^4+96280817472725608650690125875756493052804 x^{80} y^{65} v_1^4+116704021179237718394647603953016899258114 x^{79} y^{66} v_1^4+137606233927871080695151088641382993104176 x^{78} y^{67} v_1^4+157842444799686675748636238767043161171581 x^{77} y^{68} v_1^4+176143018109836652666195597119009871603865 x^{76} y^{69} v_1^4+191240991090703150383992717945755358308296 x^{75} y^{70} v_1^4+202015131433853560136321413089451159933236 x^{74} y^{71} v_1^4+207626662862576852951190640668633666296829 x^{73} y^{72} v_1^4+207626662862576852951190640668633666296829 x^{72} y^{73} v_1^4+202015131433853560136321413089451159933236 x^{71} y^{74} v_1^4+191240991090703150383992717945755358308296 x^{70} y^{75} v_1^4+176143018109836652666195597119009871603865 x^{69} y^{76} v_1^4+157842444799686675748636238767043161171581 x^{68} y^{77} v_1^4+137606233927871080695151088641382993104176 x^{67} y^{78} v_1^4+116704021179237718394647603953016899258114 x^{66} y^{79} v_1^4+96280817472725608650690125875756493052804 x^{65} y^{80} v_1^4+77262384391481076835300733053253355605505 x^{64} y^{81} v_1^4+60302348793052807245166317997830896071204 x^{63} y^{82} v_1^4+45771662336491914988897513832581736523864 x^{62} y^{83} v_1^4+33783846009741785278720859870661943572426 x^{61} y^{84} v_1^4+24244877723977556895459584406430458576516 x^{60} y^{85} v_1^4+16915030969417328711236112770913383335480 x^{59} y^{86} v_1^4+11471112955338872214411288593606282396952 x^{58} y^{87} v_1^4+7560506264970194818335611124439712006802 x^{57} y^{88} v_1^4+4842121988788211561597350526042384299524 x^{56} y^{89} v_1^4+3012875902947378716379061783530332397064 x^{55} y^{90} v_1^4+1820968951134625116783962776756035717280 x^{54} y^{91} v_1^4+1068829600591239057915545437056142444458 x^{53} y^{92} v_1^4+609117943335326821437923442127275539388 x^{52} y^{93} v_1^4+336958861288931385516918901856008050336 x^{51} y^{94} v_1^4+180893703627315675149491854687954011256 x^{50} y^{95} v_1^4+94215469922944149997015454447857120185 x^{49} y^{96} v_1^4+47593381134718501453832279304423735252 x^{48} y^{97} v_1^4+23311043370180741758721324195064127202 x^{47} y^{98} v_1^4+11066858635359113513710353341981417052 x^{46} y^{99} v_1^4+5090754727677039718145768608201250187 x^{45} y^{100} v_1^4+2268157876711508067869611915619774175 x^{44} y^{101} v_1^4+978420930724029606689276182511547048 x^{43} y^{102} v_1^4+408466916859696473086092621288788238 x^{42} y^{103} v_1^4+164957747630688197728070274742765203 x^{41} y^{104} v_1^4+64412045582523229934378935163750133 x^{40} y^{105} v_1^4+24306416617450513888221086954454300 x^{39} y^{106} v_1^4+8859339459738867187304187592083012 x^{38} y^{107} v_1^4+3117170406704755582158866153757187 x^{37} y^{108} v_1^4+1058119728371668749003379061012477 x^{36} y^{109} v_1^4+346292587616496966174930004012572 x^{35} y^{110} v_1^4+109190821341851420724933439204740 x^{34} y^{111} v_1^4+33146973202650428179318503518940 x^{33} y^{112} v_1^4+9679986050734568185608814754085 x^{32} y^{113} v_1^4+2717146444119996556921247805888 x^{31} y^{114} v_1^4+732431379385411727069748667968 x^{30} y^{115} v_1^4+189415586534398154283623054400 x^{29} y^{116} v_1^4+46946890363543780337462681870 x^{28} y^{117} v_1^4+11139161321796322252344838120 x^{27} y^{118} v_1^4+2527118469498395258529646932 x^{26} y^{119} v_1^4+547463348927713539944341992 x^{25} y^{120} v_1^4+113088948751504663740743850 x^{24} y^{121} v_1^4+22240477690189640005269600 x^{23} y^{122} v_1^4+4157056696515440346977400 x^{22} y^{123} v_1^4+737107925881997493194976 x^{21} y^{124} v_1^4+123731302204642331436930 x^{20} y^{125} v_1^4+19616966013796790109240 x^{19} y^{126} v_1^4+2930020830888460626240 x^{18} y^{127} v_1^4+411092104660612774245 x^{17} y^{128} v_1^4+54002237274589398039 x^{16} y^{129} v_1^4+6616958169836937960 x^{15} y^{130} v_1^4+753002817922460520 x^{14} y^{131} v_1^4+79182452489763420 x^{13} y^{132} v_1^4+7648190396285985 x^{12} y^{133} v_1^4+673711850418516 x^{11} y^{134} v_1^4+53652085960330 x^{10} y^{135} v_1^4+3821164225450 x^9 y^{136} v_1^4+240071225625 x^8 y^{137} v_1^4+13069344420 x^7 y^{138} v_1^4+601834464 x^6 y^{139} v_1^4+22662360 x^5 y^{140} v_1^4+663495 x^4 y^{141} v_1^4+13920 x^3 y^{142} v_1^4+180 x^2 y^{143} v_1^4+x y^{144} v_1^4\right) d^{145}}{6622901037258602984306421539052678567024823541944257868163549390208241298695744860782738755908194035326919605935262978087335704464016952082722939897790222300878555647942567229091208522281393681381255118327092178399222210560000}+O[d]^{146}$
$(x+y) d+\frac{\left(x^{40} y v_1+20 x^{39} y^2 v_1+260 x^{38} y^3 v_1+2470 x^{37} y^4 v_1+18278 x^{36} y^5 v_1+109668 x^{35} y^6 v_1+548340 x^{34} y^7 v_1+2330445 x^{33} y^8 v_1+8544965 x^{32} y^9 v_1+27343888 x^{31} y^{10} v_1+77060048 x^{30} y^{11} v_1+192650120 x^{29} y^{12} v_1+429757960 x^{28} y^{13} v_1+859515920 x^{27} y^{14} v_1+1547128656 x^{26} y^{15} v_1+2514084066 x^{25} y^{16} v_1+3697182450 x^{24} y^{17} v_1+4929576600 x^{23} y^{18} v_1+5967382200 x^{22} y^{19} v_1+6564120420 x^{21} y^{20} v_1+6564120420 x^{20} y^{21} v_1+5967382200 x^{19} y^{22} v_1+4929576600 x^{18} y^{23} v_1+3697182450 x^{17} y^{24} v_1+2514084066 x^{16} y^{25} v_1+1547128656 x^{15} y^{26} v_1+859515920 x^{14} y^{27} v_1+429757960 x^{13} y^{28} v_1+192650120 x^{12} y^{29} v_1+77060048 x^{11} y^{30} v_1+27343888 x^{10} y^{31} v_1+8544965 x^9 y^{32} v_1+2330445 x^8 y^{33} v_1+548340 x^7 y^{34} v_1+109668 x^6 y^{35} v_1+18278 x^5 y^{36} v_1+2470 x^4 y^{37} v_1+260 x^3 y^{38} v_1+20 x^2 y^{39} v_1+x y^{40} v_1\right) d^{41}}{32460430015431999968619493682032835511850959272235390105491169600}+\frac{\left(x^{80} y v_1^2+60 x^{79} y^2 v_1^2+1840 x^{78} y^3 v_1^2+38350 x^{77} y^4 v_1^2+608868 x^{76} y^5 v_1^2+7821996 x^{75} y^6 v_1^2+84355440 x^{74} y^7 v_1^2+782618265 x^{73} y^8 v_1^2+6356448670 x^{72} y^9 v_1^2+45793774312 x^{71} y^{10} v_1^2+295655057880 x^{70} y^{11} v_1^2+1724847154420 x^{69} y^{12} v_1^2+9155387731420 x^{68} y^{13} v_1^2+44469885639960 x^{67} y^{14} v_1^2+198633702987144 x^{66} y^{15} v_1^2+819366538906035 x^{65} y^{16} v_1^2+3132875757705525 x^{64} y^{17} v_1^2+11139118734751800 x^{63} y^{18} v_1^2+36934978614190800 x^{62} y^{19} v_1^2+114498440268111900 x^{61} y^{20} v_1^2+332590714009588320 x^{60} y^{21} v_1^2+907065589629895800 x^{59} y^{22} v_1^2+2326820430501918000 x^{58} y^{23} v_1^2+5623149377410150950 x^{57} y^{24} v_1^2+12820780583009228232 x^{56} y^{25} v_1^2+27613988949567004848 x^{55} y^{26} v_1^2+56250718231458970240 x^{54} y^{27} v_1^2+108483528018243486280 x^{53} y^{28} v_1^2+198262999481810056080 x^{52} y^{29} v_1^2+343655865768547823920 x^{51} y^{30} v_1^2+565369327554735054208 x^{50} y^{31} v_1^2+883389574304282067165 x^{49} y^{32} v_1^2+1311699670936663581690 x^{48} y^{33} v_1^2+1851811300145878546020 x^{47} y^{34} v_1^2+2486718031624465585752 x^{46} y^{35} v_1^2+3177473040409039377850 x^{45} y^{36} v_1^2+3864494238335318164720 x^{44} y^{37} v_1^2+4474677539125105243620 x^{43} y^{38} v_1^2+4933618825189218601960 x^{42} y^{39} v_1^2+5180299766448679532059 x^{41} y^{40} v_1^2+5180299766448679532059 x^{40} y^{41} v_1^2+4933618825189218601960 x^{39} y^{42} v_1^2+4474677539125105243620 x^{38} y^{43} v_1^2+3864494238335318164720 x^{37} y^{44} v_1^2+3177473040409039377850 x^{36} y^{45} v_1^2+2486718031624465585752 x^{35} y^{46} v_1^2+1851811300145878546020 x^{34} y^{47} v_1^2+1311699670936663581690 x^{33} y^{48} v_1^2+883389574304282067165 x^{32} y^{49} v_1^2+565369327554735054208 x^{31} y^{50} v_1^2+343655865768547823920 x^{30} y^{51} v_1^2+198262999481810056080 x^{29} y^{52} v_1^2+108483528018243486280 x^{28} y^{53} v_1^2+56250718231458970240 x^{27} y^{54} v_1^2+27613988949567004848 x^{26} y^{55} v_1^2+12820780583009228232 x^{25} y^{56} v_1^2+5623149377410150950 x^{24} y^{57} v_1^2+2326820430501918000 x^{23} y^{58} v_1^2+907065589629895800 x^{22} y^{59} v_1^2+332590714009588320 x^{21} y^{60} v_1^2+114498440268111900 x^{20} y^{61} v_1^2+36934978614190800 x^{19} y^{62} v_1^2+11139118734751800 x^{18} y^{63} v_1^2+3132875757705525 x^{17} y^{64} v_1^2+819366538906035 x^{16} y^{65} v_1^2+198633702987144 x^{15} y^{66} v_1^2+44469885639960 x^{14} y^{67} v_1^2+9155387731420 x^{13} y^{68} v_1^2+1724847154420 x^{12} y^{69} v_1^2+295655057880 x^{11} y^{70} v_1^2+45793774312 x^{10} y^{71} v_1^2+6356448670 x^9 y^{72} v_1^2+782618265 x^8 y^{73} v_1^2+84355440 x^7 y^{74} v_1^2+7821996 x^6 y^{75} v_1^2+608868 x^5 y^{76} v_1^2+38350 x^4 y^{77} v_1^2+1840 x^3 y^{78} v_1^2+60 x^2 y^{79} v_1^2+x y^{80} v_1^2\right) d^{81}}{1053679516786758709720897165633610283654902079788240782212064028591087290644091537723780612089272277472252206352674863575964160000}+\frac{\left(x^{120} y v_1^3+120 x^{119} y^2 v_1^3+6600 x^{118} y^3 v_1^3+233050 x^{117} y^4 v_1^3+6062238 x^{116} y^5 v_1^3+125025264 x^{115} y^6 v_1^3+2138341920 x^{114} y^7 v_1^3+31253990625 x^{113} y^8 v_1^3+398767664295 x^{112} y^9 v_1^3+4511991614416 x^{111} y^{10} v_1^3+45825752257896 x^{110} y^{11} v_1^3+421794242851800 x^{109} y^{12} v_1^3+3545737885488820 x^{108} y^{13} v_1^3+27397305002268000 x^{107} y^{14} v_1^3+195632742719165544 x^{106} y^{15} v_1^3+1296886287053377764 x^{105} y^{16} v_1^3+8013312884028568185 x^{104} y^{17} v_1^3+46310280226455367980 x^{103} y^{18} v_1^3+251087401469398554060 x^{102} y^{19} v_1^3+1280660245934200737606 x^{101} y^{20} v_1^3+6159698535445165516806 x^{100} y^{21} v_1^3+27999536772158564063100 x^{99} y^{22} v_1^3+120522072057113016798300 x^{98} y^{23} v_1^3+492137417382588895410675 x^{97} y^{24} v_1^3+1909506000225027923421651 x^{96} y^{25} v_1^3+7050511307127514207330944 x^{95} y^{26} v_1^3+24807410849870596262542080 x^{94} y^{27} v_1^3+83282130622379305696306120 x^{93} y^{28} v_1^3+267077375776146910422348120 x^{92} y^{29} v_1^3+819037629369382960509691488 x^{91} y^{30} v_1^3+2404272316098806567844148576 x^{90} y^{31} v_1^3+6762016772417467776343735035 x^{89} y^{32} v_1^3+18236955637310417363772442845 x^{88} y^{33} v_1^3+47201534089555909793289574560 x^{87} y^{34} v_1^3+117329530080757007396356813944 x^{86} y^{35} v_1^3+280287213925948113633669544494 x^{85} y^{36} v_1^3+643903062883564229115369820990 x^{84} y^{37} v_1^3+1423364669796240571906449058440 x^{83} y^{38} v_1^3+3029211994499976965400379418640 x^{82} y^{39} v_1^3+6209884593905252545519457340271 x^{81} y^{40} v_1^3+12268308593139457234426144033570 x^{80} y^{41} v_1^3+23368206849008775462191397713520 x^{79} y^{42} v_1^3+42932287006141962690593021973000 x^{78} y^{43} v_1^3+76107236060207064462568402568140 x^{77} y^{44} v_1^3+130227937261754005565248305928824 x^{76} y^{45} v_1^3+215159200695819422878556448288288 x^{75} y^{46} v_1^3+343339150048372166957416794183720 x^{74} y^{47} v_1^3+529314522992552123730287424566955 x^{73} y^{48} v_1^3+788570615887746757580649687419295 x^{72} y^{49} v_1^3+1135541686878920700243681131651908 x^{71} y^{50} v_1^3+1580852152321978356204947155457436 x^{70} y^{51} v_1^3+2128070205049015280967281906747790 x^{69} y^{52} v_1^3+2770506493365807622898271773900290 x^{68} y^{53} v_1^3+3488785954608851035097118760071780 x^{67} y^{54} v_1^3+4249975617432627965780358195858156 x^{66} y^{55} v_1^3+5008899834831324351644758304397639 x^{65} y^{56} v_1^3+5711903320421691286371315388343130 x^{64} y^{57} v_1^3+6302789870810144432462846646069840 x^{63} y^{58} v_1^3+6730097658661680543394316043676080 x^{62} y^{59} v_1^3+6954434247283736855932029353389776 x^{61} y^{60} v_1^3+6954434247283736855932029353389776 x^{60} y^{61} v_1^3+6730097658661680543394316043676080 x^{59} y^{62} v_1^3+6302789870810144432462846646069840 x^{58} y^{63} v_1^3+5711903320421691286371315388343130 x^{57} y^{64} v_1^3+5008899834831324351644758304397639 x^{56} y^{65} v_1^3+4249975617432627965780358195858156 x^{55} y^{66} v_1^3+3488785954608851035097118760071780 x^{54} y^{67} v_1^3+2770506493365807622898271773900290 x^{53} y^{68} v_1^3+2128070205049015280967281906747790 x^{52} y^{69} v_1^3+1580852152321978356204947155457436 x^{51} y^{70} v_1^3+1135541686878920700243681131651908 x^{50} y^{71} v_1^3+788570615887746757580649687419295 x^{49} y^{72} v_1^3+529314522992552123730287424566955 x^{48} y^{73} v_1^3+343339150048372166957416794183720 x^{47} y^{74} v_1^3+215159200695819422878556448288288 x^{46} y^{75} v_1^3+130227937261754005565248305928824 x^{45} y^{76} v_1^3+76107236060207064462568402568140 x^{44} y^{77} v_1^3+42932287006141962690593021973000 x^{43} y^{78} v_1^3+23368206849008775462191397713520 x^{42} y^{79} v_1^3+12268308593139457234426144033570 x^{41} y^{80} v_1^3+6209884593905252545519457340271 x^{40} y^{81} v_1^3+3029211994499976965400379418640 x^{39} y^{82} v_1^3+1423364669796240571906449058440 x^{38} y^{83} v_1^3+643903062883564229115369820990 x^{37} y^{84} v_1^3+280287213925948113633669544494 x^{36} y^{85} v_1^3+117329530080757007396356813944 x^{35} y^{86} v_1^3+47201534089555909793289574560 x^{34} y^{87} v_1^3+18236955637310417363772442845 x^{33} y^{88} v_1^3+6762016772417467776343735035 x^{32} y^{89} v_1^3+2404272316098806567844148576 x^{31} y^{90} v_1^3+819037629369382960509691488 x^{30} y^{91} v_1^3+267077375776146910422348120 x^{29} y^{92} v_1^3+83282130622379305696306120 x^{28} y^{93} v_1^3+24807410849870596262542080 x^{27} y^{94} v_1^3+7050511307127514207330944 x^{26} y^{95} v_1^3+1909506000225027923421651 x^{25} y^{96} v_1^3+492137417382588895410675 x^{24} y^{97} v_1^3+120522072057113016798300 x^{23} y^{98} v_1^3+27999536772158564063100 x^{22} y^{99} v_1^3+6159698535445165516806 x^{21} y^{100} v_1^3+1280660245934200737606 x^{20} y^{101} v_1^3+251087401469398554060 x^{19} y^{102} v_1^3+46310280226455367980 x^{18} y^{103} v_1^3+8013312884028568185 x^{17} y^{104} v_1^3+1296886287053377764 x^{16} y^{105} v_1^3+195632742719165544 x^{15} y^{106} v_1^3+27397305002268000 x^{14} y^{107} v_1^3+3545737885488820 x^{13} y^{108} v_1^3+421794242851800 x^{12} y^{109} v_1^3+45825752257896 x^{11} y^{110} v_1^3+4511991614416 x^{10} y^{111} v_1^3+398767664295 x^9 y^{112} v_1^3+31253990625 x^8 y^{113} v_1^3+2138341920 x^7 y^{114} v_1^3+125025264 x^6 y^{115} v_1^3+6062238 x^5 y^{116} v_1^3+233050 x^4 y^{117} v_1^3+6600 x^3 y^{118} v_1^3+120 x^2 y^{119} v_1^3+x y^{120} v_1^3\right) d^{121}}{34202890213350788293773765657021626677040390147430837679335759410001645891167235797678474558528074815358937921061488189860337414158816712462538171754500777929560468753059170771297686081536000000}+\frac{\left(x^{160} y v_1^4+200 x^{159} y^2 v_1^4+17200 x^{158} y^3 v_1^4+912450 x^{157} y^4 v_1^4+34713168 x^{156} y^5 v_1^4+1027567632 x^{155} y^6 v_1^4+24891625200 x^{154} y^7 v_1^4+510417775725 x^{153} y^8 v_1^4+9075869851620 x^{152} y^9 v_1^4+142465213359040 x^{151} y^{10} v_1^4+2001484590186536 x^{150} y^{11} v_1^4+25440351620183500 x^{149} y^{12} v_1^4+295131306455284320 x^{148} y^{13} v_1^4+3147356830386702240 x^{147} y^{14} v_1^4+31039729680508847496 x^{146} y^{15} v_1^4+284534419621696611165 x^{145} y^{16} v_1^4+2434924539069087898710 x^{144} y^{17} v_1^4+19525706592779158557660 x^{143} y^{18} v_1^4+147207721231333591909080 x^{142} y^{19} v_1^4+1046455480988402703292074 x^{141} y^{20} v_1^4+7032360785171863316192160 x^{140} y^{21} v_1^4+44779386351502197848922300 x^{139} y^{22} v_1^4+270743770022439960886372200 x^{138} y^{23} v_1^4+1557268815046412363992050825 x^{137} y^{24} v_1^4+8535742612454564782599860172 x^{136} y^{25} v_1^4+44655550330300235607806599536 x^{135} y^{26} v_1^4+223302559062351048635295539760 x^{134} y^{27} v_1^4+1068745529071873826346039246400 x^{133} y^{28} v_1^4+4901755193464025074635360960920 x^{132} y^{29} v_1^4+21568541888871079711356097919536 x^{131} y^{30} v_1^4+91146887738190661457782322453712 x^{130} y^{31} v_1^4+370290993453171979640017028703240 x^{129} y^{32} v_1^4+1447519393181673230828339430100965 x^{128} y^{33} v_1^4+5449531975865094660204718202895840 x^{127} y^{34} v_1^4+19774133356240567095464516693035992 x^{126} y^{35} v_1^4+69209747034055910782239442095170466 x^{125} y^{36} v_1^4+233817356855954474044767771096748240 x^{124} y^{37} v_1^4+762984377315679132597182527922657960 x^{123} y^{38} v_1^4+2406338373053751764321925680750878360 x^{122} y^{39} v_1^4+7339338247698536786434418845747519269 x^{121} y^{40} v_1^4+21660010511516469996983202239203785559 x^{120} y^{41} v_1^4+61885767686825334714441754303408529400 x^{119} y^{42} v_1^4+171265306995826885933092196688501391240 x^{118} y^{43} v_1^4+459302490323317254300357171869383554220 x^{117} y^{44} v_1^4+1194186605068562122934934212108702563866 x^{116} y^{45} v_1^4+3011427306201661701481430891700117727176 x^{115} y^{46} v_1^4+7368386305321939317954391479661457177760 x^{114} y^{47} v_1^4+17499918004454128872693803494478306802075 x^{113} y^{48} v_1^4+40356954553944423288040630945394931657945 x^{112} y^{49} v_1^4+90399579336377195044131713560472538997684 x^{111} y^{50} v_1^4+196752027195320165065088556297331876232784 x^{110} y^{51} v_1^4+416206213502785938840548765345467938233130 x^{109} y^{52} v_1^4+855971272049820971358634328118657298363780 x^{108} y^{53} v_1^4+1711942547588427897326119684242957585821700 x^{107} y^{54} v_1^4+3330506415012917163139806207280082312953536 x^{106} y^{55} v_1^4+6304172861997635893631671445120079678353481 x^{105} y^{56} v_1^4+11612950014654916808690557348907249171193135 x^{104} y^{57} v_1^4+20823220722235744148462163930769984143190440 x^{103} y^{58} v_1^4+36352402284531481511061648592723893024111900 x^{102} y^{59} v_1^4+61799083890657952816088112614980149516838104 x^{101} y^{60} v_1^4+102323073334109405303427507797377205532506994 x^{100} y^{61} v_1^4+165037215061745267502889661347977800506563480 x^{99} y^{62} v_1^4+259344195103331067375307041564357426841427580 x^{98} y^{63} v_1^4+397120798757687600238676049258956170932306715 x^{97} y^{64} v_1^4+592626422766481164805659623561377642267150191 x^{96} y^{65} v_1^4+862002069482768033513796435327456888150372396 x^{95} y^{66} v_1^4+1222241740314876296150741131362429813156921600 x^{94} y^{67} v_1^4+1689569464555687739373333009507906601010248450 x^{93} y^{68} v_1^4+2277245800055446327509030634648417114721191800 x^{92} y^{69} v_1^4+2992951622931596025098889118588331501376794844 x^{91} y^{70} v_1^4+3836036587138814953087815336459741106750051984 x^{90} y^{71} v_1^4+4795045733924307258970316522208748823319798555 x^{89} y^{72} v_1^4+5846014661908246375434481288170634577573466315 x^{88} y^{73} v_1^4+6952017435783122790952511308325053562935941360 x^{87} y^{74} v_1^4+8064340225508637541951829393195085329238073776 x^{86} y^{75} v_1^4+9125437623602009418957232028606548172355775476 x^{85} y^{76} v_1^4+10073535039041255026547119151557539656562693250 x^{84} y^{77} v_1^4+10848422349736778421288297507493948098921989280 x^{83} y^{78} v_1^4+11397709557318409328050660401611287811337628200 x^{82} y^{79} v_1^4+11682652296251378724618225688632414897376198369 x^{81} y^{80} v_1^4+11682652296251378724618225688632414897376198369 x^{80} y^{81} v_1^4+11397709557318409328050660401611287811337628200 x^{79} y^{82} v_1^4+10848422349736778421288297507493948098921989280 x^{78} y^{83} v_1^4+10073535039041255026547119151557539656562693250 x^{77} y^{84} v_1^4+9125437623602009418957232028606548172355775476 x^{76} y^{85} v_1^4+8064340225508637541951829393195085329238073776 x^{75} y^{86} v_1^4+6952017435783122790952511308325053562935941360 x^{74} y^{87} v_1^4+5846014661908246375434481288170634577573466315 x^{73} y^{88} v_1^4+4795045733924307258970316522208748823319798555 x^{72} y^{89} v_1^4+3836036587138814953087815336459741106750051984 x^{71} y^{90} v_1^4+2992951622931596025098889118588331501376794844 x^{70} y^{91} v_1^4+2277245800055446327509030634648417114721191800 x^{69} y^{92} v_1^4+1689569464555687739373333009507906601010248450 x^{68} y^{93} v_1^4+1222241740314876296150741131362429813156921600 x^{67} y^{94} v_1^4+862002069482768033513796435327456888150372396 x^{66} y^{95} v_1^4+592626422766481164805659623561377642267150191 x^{65} y^{96} v_1^4+397120798757687600238676049258956170932306715 x^{64} y^{97} v_1^4+259344195103331067375307041564357426841427580 x^{63} y^{98} v_1^4+165037215061745267502889661347977800506563480 x^{62} y^{99} v_1^4+102323073334109405303427507797377205532506994 x^{61} y^{100} v_1^4+61799083890657952816088112614980149516838104 x^{60} y^{101} v_1^4+36352402284531481511061648592723893024111900 x^{59} y^{102} v_1^4+20823220722235744148462163930769984143190440 x^{58} y^{103} v_1^4+11612950014654916808690557348907249171193135 x^{57} y^{104} v_1^4+6304172861997635893631671445120079678353481 x^{56} y^{105} v_1^4+3330506415012917163139806207280082312953536 x^{55} y^{106} v_1^4+1711942547588427897326119684242957585821700 x^{54} y^{107} v_1^4+855971272049820971358634328118657298363780 x^{53} y^{108} v_1^4+416206213502785938840548765345467938233130 x^{52} y^{109} v_1^4+196752027195320165065088556297331876232784 x^{51} y^{110} v_1^4+90399579336377195044131713560472538997684 x^{50} y^{111} v_1^4+40356954553944423288040630945394931657945 x^{49} y^{112} v_1^4+17499918004454128872693803494478306802075 x^{48} y^{113} v_1^4+7368386305321939317954391479661457177760 x^{47} y^{114} v_1^4+3011427306201661701481430891700117727176 x^{46} y^{115} v_1^4+1194186605068562122934934212108702563866 x^{45} y^{116} v_1^4+459302490323317254300357171869383554220 x^{44} y^{117} v_1^4+171265306995826885933092196688501391240 x^{43} y^{118} v_1^4+61885767686825334714441754303408529400 x^{42} y^{119} v_1^4+21660010511516469996983202239203785559 x^{41} y^{120} v_1^4+7339338247698536786434418845747519269 x^{40} y^{121} v_1^4+2406338373053751764321925680750878360 x^{39} y^{122} v_1^4+762984377315679132597182527922657960 x^{38} y^{123} v_1^4+233817356855954474044767771096748240 x^{37} y^{124} v_1^4+69209747034055910782239442095170466 x^{36} y^{125} v_1^4+19774133356240567095464516693035992 x^{35} y^{126} v_1^4+5449531975865094660204718202895840 x^{34} y^{127} v_1^4+1447519393181673230828339430100965 x^{33} y^{128} v_1^4+370290993453171979640017028703240 x^{32} y^{129} v_1^4+91146887738190661457782322453712 x^{31} y^{130} v_1^4+21568541888871079711356097919536 x^{30} y^{131} v_1^4+4901755193464025074635360960920 x^{29} y^{132} v_1^4+1068745529071873826346039246400 x^{28} y^{133} v_1^4+223302559062351048635295539760 x^{27} y^{134} v_1^4+44655550330300235607806599536 x^{26} y^{135} v_1^4+8535742612454564782599860172 x^{25} y^{136} v_1^4+1557268815046412363992050825 x^{24} y^{137} v_1^4+270743770022439960886372200 x^{23} y^{138} v_1^4+44779386351502197848922300 x^{22} y^{139} v_1^4+7032360785171863316192160 x^{21} y^{140} v_1^4+1046455480988402703292074 x^{20} y^{141} v_1^4+147207721231333591909080 x^{19} y^{142} v_1^4+19525706592779158557660 x^{18} y^{143} v_1^4+2434924539069087898710 x^{17} y^{144} v_1^4+284534419621696611165 x^{16} y^{145} v_1^4+31039729680508847496 x^{15} y^{146} v_1^4+3147356830386702240 x^{14} y^{147} v_1^4+295131306455284320 x^{13} y^{148} v_1^4+25440351620183500 x^{12} y^{149} v_1^4+2001484590186536 x^{11} y^{150} v_1^4+142465213359040 x^{10} y^{151} v_1^4+9075869851620 x^9 y^{152} v_1^4+510417775725 x^8 y^{153} v_1^4+24891625200 x^7 y^{154} v_1^4+1027567632 x^6 y^{155} v_1^4+34713168 x^5 y^{156} v_1^4+912450 x^4 y^{157} v_1^4+17200 x^3 y^{158} v_1^4+200 x^2 y^{159} v_1^4+x y^{160} v_1^4\right) d^{161}}{1110240524095977329553988108462879562259249379890815923221352179299499989479408403153489617660597669421195862183711606778937244648453853278542383003556122013272372795792645005840294368587292216530334116459983058882606840560445672198851773554873604505600000000}+O[d]^{162}$
$(x+y) d+\frac{\left(x^{42} y v_1+21 x^{41} y^2 v_1+287 x^{40} y^3 v_1+2870 x^{39} y^4 v_1+22386 x^{38} y^5 v_1+141778 x^{37} y^6 v_1+749398 x^{36} y^7 v_1+3372291 x^{35} y^8 v_1+13114465 x^{34} y^9 v_1+44589181 x^{33} y^{10} v_1+133767543 x^{32} y^{11} v_1+356713448 x^{31} y^{12} v_1+850624376 x^{30} y^{13} v_1+1822766520 x^{29} y^{14} v_1+3524015272 x^{28} y^{15} v_1+6167026726 x^{27} y^{16} v_1+9794689506 x^{26} y^{17} v_1+14147884842 x^{25} y^{18} v_1+18615637950 x^{24} y^{19} v_1+22338765540 x^{23} y^{20} v_1+24466267020 x^{22} y^{21} v_1+24466267020 x^{21} y^{22} v_1+22338765540 x^{20} y^{23} v_1+18615637950 x^{19} y^{24} v_1+14147884842 x^{18} y^{25} v_1+9794689506 x^{17} y^{26} v_1+6167026726 x^{16} y^{27} v_1+3524015272 x^{15} y^{28} v_1+1822766520 x^{14} y^{29} v_1+850624376 x^{13} y^{30} v_1+356713448 x^{12} y^{31} v_1+133767543 x^{11} y^{32} v_1+44589181 x^{10} y^{33} v_1+13114465 x^9 y^{34} v_1+3372291 x^8 y^{35} v_1+749398 x^7 y^{36} v_1+141778 x^6 y^{37} v_1+22386 x^5 y^{38} v_1+2870 x^4 y^{39} v_1+287 x^3 y^{40} v_1+21 x^2 y^{41} v_1+x y^{42} v_1\right) d^{43}}{403343566675122500462878634623535631588559593930513766350645748813848}+\frac{\left(x^{84} y v_1^2+63 x^{83} y^2 v_1^2+2030 x^{82} y^3 v_1^2+44485 x^{81} y^4 v_1^2+743043 x^{80} y^5 v_1^2+10049018 x^{79} y^6 v_1^2+114159744 x^{78} y^7 v_1^2+1116429795 x^{77} y^8 v_1^2+9564791600 x^{76} y^9 v_1^2+72737005341 x^{75} y^{10} v_1^2+496067894868 x^{74} y^{11} v_1^2+3059442065134 x^{73} y^{12} v_1^2+17180794528590 x^{72} y^{13} v_1^2+88360194627840 x^{71} y^{14} v_1^2+418241778587048 x^{70} y^{15} v_1^2+1829813948345061 x^{69} y^{16} v_1^2+7426901702678283 x^{68} y^{17} v_1^2+28057198358002800 x^{67} y^{18} v_1^2+98938560193858350 x^{66} y^{19} v_1^2+326497270978498095 x^{65} y^{20} v_1^2+1010586815590189695 x^{64} y^{21} v_1^2+2939888942546818860 x^{63} y^{22} v_1^2+8052739299749617200 x^{62} y^{23} v_1^2+20802909876302149050 x^{61} y^{24} v_1^2+50759100112325128524 x^{60} y^{25} v_1^2+117136384884391139946 x^{59} y^{26} v_1^2+255964692901688406608 x^{58} y^{27} v_1^2+530212578157021428960 x^{57} y^{28} v_1^2+1042141963965623506200 x^{56} y^{29} v_1^2+1945331666070014502616 x^{55} y^{30} v_1^2+3451394891414898572928 x^{54} y^{31} v_1^2+5824228879262775109359 x^{53} y^{32} v_1^2+9354064563664501583000 x^{52} y^{33} v_1^2+14306216391486897888465 x^{51} y^{34} v_1^2+20846201027595197438340 x^{50} y^{35} v_1^2+28953056982771108302648 x^{49} y^{36} v_1^2+38343237625832008434474 x^{48} y^{37} v_1^2+48433563316840431729090 x^{47} y^{38} v_1^2+58368653227987186958440 x^{46} y^{39} v_1^2+67123951212185265002493 x^{45} y^{40} v_1^2+73672629379227729880806 x^{44} y^{41} v_1^2+77180849825857621779893 x^{43} y^{42} v_1^2+77180849825857621779893 x^{42} y^{43} v_1^2+73672629379227729880806 x^{41} y^{44} v_1^2+67123951212185265002493 x^{40} y^{45} v_1^2+58368653227987186958440 x^{39} y^{46} v_1^2+48433563316840431729090 x^{38} y^{47} v_1^2+38343237625832008434474 x^{37} y^{48} v_1^2+28953056982771108302648 x^{36} y^{49} v_1^2+20846201027595197438340 x^{35} y^{50} v_1^2+14306216391486897888465 x^{34} y^{51} v_1^2+9354064563664501583000 x^{33} y^{52} v_1^2+5824228879262775109359 x^{32} y^{53} v_1^2+3451394891414898572928 x^{31} y^{54} v_1^2+1945331666070014502616 x^{30} y^{55} v_1^2+1042141963965623506200 x^{29} y^{56} v_1^2+530212578157021428960 x^{28} y^{57} v_1^2+255964692901688406608 x^{27} y^{58} v_1^2+117136384884391139946 x^{26} y^{59} v_1^2+50759100112325128524 x^{25} y^{60} v_1^2+20802909876302149050 x^{24} y^{61} v_1^2+8052739299749617200 x^{23} y^{62} v_1^2+2939888942546818860 x^{22} y^{63} v_1^2+1010586815590189695 x^{21} y^{64} v_1^2+326497270978498095 x^{20} y^{65} v_1^2+98938560193858350 x^{19} y^{66} v_1^2+28057198358002800 x^{18} y^{67} v_1^2+7426901702678283 x^{17} y^{68} v_1^2+1829813948345061 x^{16} y^{69} v_1^2+418241778587048 x^{15} y^{70} v_1^2+88360194627840 x^{14} y^{71} v_1^2+17180794528590 x^{13} y^{72} v_1^2+3059442065134 x^{12} y^{73} v_1^2+496067894868 x^{11} y^{74} v_1^2+72737005341 x^{10} y^{75} v_1^2+9564791600 x^9 y^{76} v_1^2+1116429795 x^8 y^{77} v_1^2+114159744 x^7 y^{78} v_1^2+10049018 x^6 y^{79} v_1^2+743043 x^5 y^{80} v_1^2+44485 x^4 y^{81} v_1^2+2030 x^3 y^{82} v_1^2+63 x^2 y^{83} v_1^2+x y^{84} v_1^2\right) d^{85}}{162686032778208990102858628859785420567496242104134005559503199497608837195790069736646350609806612222357371932007912024360186098956567104}+\frac{\left(x^{126} y v_1^3+126 x^{125} y^2 v_1^3+7280 x^{124} y^3 v_1^3+270165 x^{123} y^4 v_1^3+7389102 x^{122} y^5 v_1^3+160294092 x^{121} y^6 v_1^3+2884957620 x^{120} y^7 v_1^3+44390794095 x^{119} y^8 v_1^3+596509735745 x^{118} y^9 v_1^3+7111551887132 x^{117} y^{10} v_1^3+76137119785272 x^{116} y^{11} v_1^3+739051599989430 x^{115} y^{12} v_1^3+6554944948281240 x^{114} y^{13} v_1^3+53464340487775080 x^{113} y^{14} v_1^3+403182940119825984 x^{112} y^{15} v_1^3+2824110394787126949 x^{111} y^{16} v_1^3+18447206538253918950 x^{110} y^{17} v_1^3+112760986043243063050 x^{109} y^{18} v_1^3+646990911124061956900 x^{108} y^{19} v_1^3+3494077417340913065355 x^{107} y^{20} v_1^3+17804166951362147236980 x^{106} y^{21} v_1^3+85786653381869256233400 x^{105} y^{22} v_1^3+391642774700007223726200 x^{104} y^{23} v_1^3+1697139493276574271629250 x^{103} y^{24} v_1^3+6992265471399598324241034 x^{102} y^{25} v_1^3+27431312447260231663162464 x^{101} y^{26} v_1^3+102613684008147842354310640 x^{100} y^{27} v_1^3+366477973098820451143966960 x^{99} y^{28} v_1^3+1251081019272419988494289960 x^{98} y^{29} v_1^3+4086866608288238032429183152 x^{97} y^{30} v_1^3+12787940903135507193789887952 x^{96} y^{31} v_1^3+38363828533635400844144773215 x^{95} y^{32} v_1^3+110441333920590717609766839225 x^{94} y^{33} v_1^3+305337819851378963702135620440 x^{93} y^{34} v_1^3+811326227879865131146586372652 x^{92} y^{35} v_1^3+2073389277979378984590162366092 x^{91} y^{36} v_1^3+5099416911211439993337542902430 x^{90} y^{37} v_1^3+12077566417092236985271454392740 x^{89} y^{38} v_1^3+27561625984553501732837429034180 x^{88} y^{39} v_1^3+60635577233141655024427608877689 x^{87} y^{40} v_1^3+128665737129363458333500948718829 x^{86} y^{41} v_1^3+263458414199210788318264326299400 x^{85} y^{42} v_1^3+520789888610504501152659197022893 x^{84} y^{43} v_1^3+994235241966453949761577106015418 x^{83} y^{44} v_1^3+1833811668583027902994649704986370 x^{82} y^{45} v_1^3+3268968626662896654218449704539220 x^{81} y^{46} v_1^3+5633754441744063967395445241602995 x^{80} y^{47} v_1^3+9389590736278449849951574076534394 x^{79} y^{48} v_1^3+15138319758518698733435308888962744 x^{78} y^{49} v_1^3+23615778823310016225186676886131020 x^{77} y^{50} v_1^3+35655195478345115026967448354104040 x^{76} y^{51} v_1^3+52111439545282983719362228885962720 x^{75} y^{52} v_1^3+73742603130123254020429483740615084 x^{74} y^{53} v_1^3+101054678363505688385849657264893224 x^{73} y^{54} v_1^3+134127118555200404461971554397528990 x^{72} y^{55} v_1^3+172449152428115847878762445970221000 x^{71} y^{56} v_1^3+214805084603443077570224825268220440 x^{70} y^{57} v_1^3+259247515900707418548942226589688288 x^{69} y^{58} v_1^3+303187772833030826962668892395422703 x^{68} y^{59} v_1^3+343612809210768321308374368443572200 x^{67} y^{60} v_1^3+377410790444614406471454964756790850 x^{66} y^{61} v_1^3+401759873699105666449289020735964700 x^{65} y^{62} v_1^3+414514155403839182272928049439443135 x^{64} y^{63} v_1^3+414514155403839182272928049439443135 x^{63} y^{64} v_1^3+401759873699105666449289020735964700 x^{62} y^{65} v_1^3+377410790444614406471454964756790850 x^{61} y^{66} v_1^3+343612809210768321308374368443572200 x^{60} y^{67} v_1^3+303187772833030826962668892395422703 x^{59} y^{68} v_1^3+259247515900707418548942226589688288 x^{58} y^{69} v_1^3+214805084603443077570224825268220440 x^{57} y^{70} v_1^3+172449152428115847878762445970221000 x^{56} y^{71} v_1^3+134127118555200404461971554397528990 x^{55} y^{72} v_1^3+101054678363505688385849657264893224 x^{54} y^{73} v_1^3+73742603130123254020429483740615084 x^{53} y^{74} v_1^3+52111439545282983719362228885962720 x^{52} y^{75} v_1^3+35655195478345115026967448354104040 x^{51} y^{76} v_1^3+23615778823310016225186676886131020 x^{50} y^{77} v_1^3+15138319758518698733435308888962744 x^{49} y^{78} v_1^3+9389590736278449849951574076534394 x^{48} y^{79} v_1^3+5633754441744063967395445241602995 x^{47} y^{80} v_1^3+3268968626662896654218449704539220 x^{46} y^{81} v_1^3+1833811668583027902994649704986370 x^{45} y^{82} v_1^3+994235241966453949761577106015418 x^{44} y^{83} v_1^3+520789888610504501152659197022893 x^{43} y^{84} v_1^3+263458414199210788318264326299400 x^{42} y^{85} v_1^3+128665737129363458333500948718829 x^{41} y^{86} v_1^3+60635577233141655024427608877689 x^{40} y^{87} v_1^3+27561625984553501732837429034180 x^{39} y^{88} v_1^3+12077566417092236985271454392740 x^{38} y^{89} v_1^3+5099416911211439993337542902430 x^{37} y^{90} v_1^3+2073389277979378984590162366092 x^{36} y^{91} v_1^3+811326227879865131146586372652 x^{35} y^{92} v_1^3+305337819851378963702135620440 x^{34} y^{93} v_1^3+110441333920590717609766839225 x^{33} y^{94} v_1^3+38363828533635400844144773215 x^{32} y^{95} v_1^3+12787940903135507193789887952 x^{31} y^{96} v_1^3+4086866608288238032429183152 x^{30} y^{97} v_1^3+1251081019272419988494289960 x^{29} y^{98} v_1^3+366477973098820451143966960 x^{28} y^{99} v_1^3+102613684008147842354310640 x^{27} y^{100} v_1^3+27431312447260231663162464 x^{26} y^{101} v_1^3+6992265471399598324241034 x^{25} y^{102} v_1^3+1697139493276574271629250 x^{24} y^{103} v_1^3+391642774700007223726200 x^{23} y^{104} v_1^3+85786653381869256233400 x^{22} y^{105} v_1^3+17804166951362147236980 x^{21} y^{106} v_1^3+3494077417340913065355 x^{20} y^{107} v_1^3+646990911124061956900 x^{19} y^{108} v_1^3+112760986043243063050 x^{18} y^{109} v_1^3+18447206538253918950 x^{17} y^{110} v_1^3+2824110394787126949 x^{16} y^{111} v_1^3+403182940119825984 x^{15} y^{112} v_1^3+53464340487775080 x^{14} y^{113} v_1^3+6554944948281240 x^{13} y^{114} v_1^3+739051599989430 x^{12} y^{115} v_1^3+76137119785272 x^{11} y^{116} v_1^3+7111551887132 x^{10} y^{117} v_1^3+596509735745 x^9 y^{118} v_1^3+44390794095 x^8 y^{119} v_1^3+2884957620 x^7 y^{120} v_1^3+160294092 x^6 y^{121} v_1^3+7389102 x^5 y^{122} v_1^3+270165 x^4 y^{123} v_1^3+7280 x^3 y^{124} v_1^3+126 x^2 y^{125} v_1^3+x y^{126} v_1^3\right) d^{127}}{65618364708988702400955993803590680693222533284458333486436692564560020469224966629885896319790194024388370931999165233672738505551053606877624916898603374216117570530919876629099459664069891957878016456192}+O[d]^{128}$
$(x+y) d+\frac{\left(x^{46} y v_1+23 x^{45} y^2 v_1+345 x^{44} y^3 v_1+3795 x^{43} y^4 v_1+32637 x^{42} y^5 v_1+228459 x^{41} y^6 v_1+1338117 x^{40} y^7 v_1+6690585 x^{39} y^8 v_1+28992535 x^{38} y^9 v_1+110171633 x^{37} y^{10} v_1+370577311 x^{36} y^{11} v_1+1111731933 x^{35} y^{12} v_1+2993124435 x^{34} y^{13} v_1+7269016485 x^{33} y^{14} v_1+15991836267 x^{32} y^{15} v_1+31983672534 x^{31} y^{16} v_1+58323167562 x^{30} y^{17} v_1+97205279270 x^{29} y^{18} v_1+148365952570 x^{28} y^{19} v_1+207712333598 x^{27} y^{20} v_1+267058714626 x^{26} y^{21} v_1+315614844558 x^{25} y^{22} v_1+343059613650 x^{24} y^{23} v_1+343059613650 x^{23} y^{24} v_1+315614844558 x^{22} y^{25} v_1+267058714626 x^{21} y^{26} v_1+207712333598 x^{20} y^{27} v_1+148365952570 x^{19} y^{28} v_1+97205279270 x^{18} y^{29} v_1+58323167562 x^{17} y^{30} v_1+31983672534 x^{16} y^{31} v_1+15991836267 x^{15} y^{32} v_1+7269016485 x^{14} y^{33} v_1+2993124435 x^{13} y^{34} v_1+1111731933 x^{12} y^{35} v_1+370577311 x^{11} y^{36} v_1+110171633 x^{10} y^{37} v_1+28992535 x^9 y^{38} v_1+6690585 x^8 y^{39} v_1+1338117 x^7 y^{40} v_1+228459 x^6 y^{41} v_1+32637 x^5 y^{42} v_1+3795 x^4 y^{43} v_1+345 x^3 y^{44} v_1+23 x^2 y^{45} v_1+x y^{46} v_1\right) d^{47}}{82509026882222311120566982684134696912730742581791615268985651657159497554528}+\frac{\left(x^{92} y v_1^2+69 x^{91} y^2 v_1^2+2438 x^{90} y^3 v_1^2+58650 x^{89} y^4 v_1^2+1076607 x^{88} y^5 v_1^2+16018695 x^{87} y^6 v_1^2+200427612 x^{86} y^7 v_1^2+2161287414 x^{85} y^8 v_1^2+20441151445 x^{84} y^9 v_1^2+171815843771 x^{83} y^{10} v_1^2+1296799216674 x^{82} y^{11} v_1^2+8862573045872 x^{81} y^{12} v_1^2+55223640564099 x^{80} y^{13} v_1^2+315570929382765 x^{79} y^{14} v_1^2+1662022886585496 x^{78} y^{15} v_1^2+8102393555776827 x^{77} y^{16} v_1^2+36699135016980249 x^{76} y^{17} v_1^2+154952000610306988 x^{75} y^{18} v_1^2+611652782354006470 x^{74} y^{19} v_1^2+2263115502422157537 x^{73} y^{20} v_1^2+7867020823097643207 x^{72} y^{21} v_1^2+25746613918479858690 x^{71} y^{22} v_1^2+79478678091410481780 x^{70} y^{23} v_1^2+231812811443006852175 x^{69} y^{24} v_1^2+639803359898313756561 x^{68} y^{25} v_1^2+1673331864616494693324 x^{67} y^{26} v_1^2+4152342034626421387402 x^{66} y^{27} v_1^2+9787663367482073508589 x^{65} y^{28} v_1^2+21937866168591507970935 x^{64} y^{29} v_1^2+46800781159720206838890 x^{63} y^{30} v_1^2+95111264937527887893504 x^{62} y^{31} v_1^2+184278075816476274629931 x^{61} y^{32} v_1^2+340635231054705837271812 x^{60} y^{33} v_1^2+601120995978895647133515 x^{59} y^{34} v_1^2+1013318250364425202614144 x^{58} y^{35} v_1^2+1632568292253796530344543 x^{57} y^{36} v_1^2+2515037639418010981242956 x^{56} y^{37} v_1^2+3706371258089700422403207 x^{55} y^{38} v_1^2+5226933825511115987002800 x^{54} y^{39} v_1^2+7056360664440006583791897 x^{53} y^{40} v_1^2+9121636956471228023178960 x^{52} y^{41} v_1^2+11293455279440568028730397 x^{51} y^{42} v_1^2+13394563238406255103846824 x^{50} y^{43} v_1^2+15221094589098017163462645 x^{49} y^{44} v_1^2+16574080774795618689103792 x^{48} y^{45} v_1^2+17294692982395428197325697 x^{47} y^{46} v_1^2+17294692982395428197325697 x^{46} y^{47} v_1^2+16574080774795618689103792 x^{45} y^{48} v_1^2+15221094589098017163462645 x^{44} y^{49} v_1^2+13394563238406255103846824 x^{43} y^{50} v_1^2+11293455279440568028730397 x^{42} y^{51} v_1^2+9121636956471228023178960 x^{41} y^{52} v_1^2+7056360664440006583791897 x^{40} y^{53} v_1^2+5226933825511115987002800 x^{39} y^{54} v_1^2+3706371258089700422403207 x^{38} y^{55} v_1^2+2515037639418010981242956 x^{37} y^{56} v_1^2+1632568292253796530344543 x^{36} y^{57} v_1^2+1013318250364425202614144 x^{35} y^{58} v_1^2+601120995978895647133515 x^{34} y^{59} v_1^2+340635231054705837271812 x^{33} y^{60} v_1^2+184278075816476274629931 x^{32} y^{61} v_1^2+95111264937527887893504 x^{31} y^{62} v_1^2+46800781159720206838890 x^{30} y^{63} v_1^2+21937866168591507970935 x^{29} y^{64} v_1^2+9787663367482073508589 x^{28} y^{65} v_1^2+4152342034626421387402 x^{27} y^{66} v_1^2+1673331864616494693324 x^{26} y^{67} v_1^2+639803359898313756561 x^{25} y^{68} v_1^2+231812811443006852175 x^{24} y^{69} v_1^2+79478678091410481780 x^{23} y^{70} v_1^2+25746613918479858690 x^{22} y^{71} v_1^2+7867020823097643207 x^{21} y^{72} v_1^2+2263115502422157537 x^{20} y^{73} v_1^2+611652782354006470 x^{19} y^{74} v_1^2+154952000610306988 x^{18} y^{75} v_1^2+36699135016980249 x^{17} y^{76} v_1^2+8102393555776827 x^{16} y^{77} v_1^2+1662022886585496 x^{15} y^{78} v_1^2+315570929382765 x^{14} y^{79} v_1^2+55223640564099 x^{13} y^{80} v_1^2+8862573045872 x^{12} y^{81} v_1^2+1296799216674 x^{11} y^{82} v_1^2+171815843771 x^{10} y^{83} v_1^2+20441151445 x^9 y^{84} v_1^2+2161287414 x^8 y^{85} v_1^2+200427612 x^7 y^{86} v_1^2+16018695 x^6 y^{87} v_1^2+1076607 x^5 y^{88} v_1^2+58650 x^4 y^{89} v_1^2+2438 x^3 y^{90} v_1^2+69 x^2 y^{91} v_1^2+x y^{92} v_1^2\right) d^{93}}{6807739517051283990370106856968124192474229146184900948675688481754810058334806187680783749814151401032367488804835386653543318373849381575692412333302784}+\frac{\left(x^{138} y v_1^3+138 x^{137} y^2 v_1^3+8740 x^{136} y^3 v_1^3+355810 x^{135} y^4 v_1^3+10683477 x^{134} y^5 v_1^3+254616348 x^{133} y^6 v_1^3+5038138224 x^{132} y^7 v_1^3+85290568110 x^{131} y^8 v_1^3+1261892753935 x^{130} y^9 v_1^3+16576421644926 x^{129} y^{10} v_1^3+195693016688988 x^{128} y^{11} v_1^3+2096254751061744 x^{127} y^{12} v_1^3+20534020054782675 x^{126} y^{13} v_1^3+185121751422426840 x^{125} y^{14} v_1^3+1544343284740142496 x^{124} y^{15} v_1^3+11976762850291881171 x^{123} y^{16} v_1^3+86692100934187649898 x^{122} y^{17} v_1^3+587734747221215489630 x^{121} y^{18} v_1^3+3743553990349042124640 x^{120} y^{19} v_1^3+22463587057596674905377 x^{119} y^{20} v_1^3+127301527013870922107010 x^{118} y^{21} v_1^3+682824846051953425705380 x^{117} y^{22} v_1^3+3473579782507593619504800 x^{116} y^{23} v_1^3+16789200761598145501125375 x^{115} y^{24} v_1^3+77230963306711367618933286 x^{114} y^{25} v_1^3+338629743215137536054631578 x^{113} y^{26} v_1^3+1417232336909091721761141784 x^{112} y^{27} v_1^3+5668939135299734369118075725 x^{111} y^{28} v_1^3+21698375179875496693994398710 x^{110} y^{29} v_1^3+79560755793657980931519634160 x^{109} y^{30} v_1^3+279745978385739773706456929744 x^{108} y^{31} v_1^3+944142861329947552735566767817 x^{107} y^{32} v_1^3+3061312042523242816606008306855 x^{106} y^{33} v_1^3+9544091086634635348314378913710 x^{105} y^{34} v_1^3+28632274273222156409368339355274 x^{104} y^{35} v_1^3+82715460644098966325305066259779 x^{103} y^{36} v_1^3+230261960524286113242508868398557 x^{102} y^{37} v_1^3+618071581955770825214329490209860 x^{101} y^{38} v_1^3+1600646922599571090809764153956540 x^{100} y^{39} v_1^3+4001617313555288391464416968683247 x^{99} y^{40} v_1^3+9662441815023430877324332410975093 x^{98} y^{41} v_1^3+22545697579681460659864010321005614 x^{97} y^{42} v_1^3+50858899204769021006006464432626930 x^{96} y^{43} v_1^3+110964871007444413147657575925557765 x^{95} y^{44} v_1^3+234259172143401175197628278976392407 x^{94} y^{45} v_1^3+478703525701636224907983650453431920 x^{93} y^{46} v_1^3+947221870022659989076916268456244177 x^{92} y^{47} v_1^3+1815508584226672393172218466563571796 x^{91} y^{48} v_1^3+3371658799293326967623218026495810138 x^{90} y^{49} v_1^3+6068985838741383104960198702796300684 x^{89} y^{50} v_1^3+10590975287226648285504101049379035123 x^{88} y^{51} v_1^3+17923188947623449504732642234662801064 x^{87} y^{52} v_1^3+29421083744219133849565192354022849748 x^{86} y^{53} v_1^3+46855800037094958620170076716519008424 x^{85} y^{54} v_1^3+72413509148241369693339117349884335677 x^{84} y^{55} v_1^3+108620263722364569577648094005146019304 x^{83} y^{56} v_1^3+158166348929058812830481583413484810670 x^{82} y^{57} v_1^3+223614493313497955595827773624654660828 x^{81} y^{58} v_1^3+306996168786328302871200198314776130319 x^{80} y^{59} v_1^3+409328225048438077796831245494018026772 x^{79} y^{60} v_1^3+530113602931583924375610955229127136104 x^{78} y^{61} v_1^3+666917113365541161261225016077674392656 x^{77} y^{62} v_1^3+815120916335661466120046276445240702681 x^{76} y^{63} v_1^3+967956088148598012955377541647398641323 x^{75} y^{64} v_1^3+1116872409402228486274458663228367740514 x^{74} y^{65} v_1^3+1252250883269165276641200803914376180118 x^{73} y^{66} v_1^3+1364392753412672616518741584826534150763 x^{72} y^{67} v_1^3+1444651150672241594592494074725481823385 x^{71} y^{68} v_1^3+1486525097068538452612089184157458149180 x^{70} y^{69} v_1^3+1486525097068538452612089184157458149180 x^{69} y^{70} v_1^3+1444651150672241594592494074725481823385 x^{68} y^{71} v_1^3+1364392753412672616518741584826534150763 x^{67} y^{72} v_1^3+1252250883269165276641200803914376180118 x^{66} y^{73} v_1^3+1116872409402228486274458663228367740514 x^{65} y^{74} v_1^3+967956088148598012955377541647398641323 x^{64} y^{75} v_1^3+815120916335661466120046276445240702681 x^{63} y^{76} v_1^3+666917113365541161261225016077674392656 x^{62} y^{77} v_1^3+530113602931583924375610955229127136104 x^{61} y^{78} v_1^3+409328225048438077796831245494018026772 x^{60} y^{79} v_1^3+306996168786328302871200198314776130319 x^{59} y^{80} v_1^3+223614493313497955595827773624654660828 x^{58} y^{81} v_1^3+158166348929058812830481583413484810670 x^{57} y^{82} v_1^3+108620263722364569577648094005146019304 x^{56} y^{83} v_1^3+72413509148241369693339117349884335677 x^{55} y^{84} v_1^3+46855800037094958620170076716519008424 x^{54} y^{85} v_1^3+29421083744219133849565192354022849748 x^{53} y^{86} v_1^3+17923188947623449504732642234662801064 x^{52} y^{87} v_1^3+10590975287226648285504101049379035123 x^{51} y^{88} v_1^3+6068985838741383104960198702796300684 x^{50} y^{89} v_1^3+3371658799293326967623218026495810138 x^{49} y^{90} v_1^3+1815508584226672393172218466563571796 x^{48} y^{91} v_1^3+947221870022659989076916268456244177 x^{47} y^{92} v_1^3+478703525701636224907983650453431920 x^{46} y^{93} v_1^3+234259172143401175197628278976392407 x^{45} y^{94} v_1^3+110964871007444413147657575925557765 x^{44} y^{95} v_1^3+50858899204769021006006464432626930 x^{43} y^{96} v_1^3+22545697579681460659864010321005614 x^{42} y^{97} v_1^3+9662441815023430877324332410975093 x^{41} y^{98} v_1^3+4001617313555288391464416968683247 x^{40} y^{99} v_1^3+1600646922599571090809764153956540 x^{39} y^{100} v_1^3+618071581955770825214329490209860 x^{38} y^{101} v_1^3+230261960524286113242508868398557 x^{37} y^{102} v_1^3+82715460644098966325305066259779 x^{36} y^{103} v_1^3+28632274273222156409368339355274 x^{35} y^{104} v_1^3+9544091086634635348314378913710 x^{34} y^{105} v_1^3+3061312042523242816606008306855 x^{33} y^{106} v_1^3+944142861329947552735566767817 x^{32} y^{107} v_1^3+279745978385739773706456929744 x^{31} y^{108} v_1^3+79560755793657980931519634160 x^{30} y^{109} v_1^3+21698375179875496693994398710 x^{29} y^{110} v_1^3+5668939135299734369118075725 x^{28} y^{111} v_1^3+1417232336909091721761141784 x^{27} y^{112} v_1^3+338629743215137536054631578 x^{26} y^{113} v_1^3+77230963306711367618933286 x^{25} y^{114} v_1^3+16789200761598145501125375 x^{24} y^{115} v_1^3+3473579782507593619504800 x^{23} y^{116} v_1^3+682824846051953425705380 x^{22} y^{117} v_1^3+127301527013870922107010 x^{21} y^{118} v_1^3+22463587057596674905377 x^{20} y^{119} v_1^3+3743553990349042124640 x^{19} y^{120} v_1^3+587734747221215489630 x^{18} y^{121} v_1^3+86692100934187649898 x^{17} y^{122} v_1^3+11976762850291881171 x^{16} y^{123} v_1^3+1544343284740142496 x^{15} y^{124} v_1^3+185121751422426840 x^{14} y^{125} v_1^3+20534020054782675 x^{13} y^{126} v_1^3+2096254751061744 x^{12} y^{127} v_1^3+195693016688988 x^{11} y^{128} v_1^3+16576421644926 x^{10} y^{129} v_1^3+1261892753935 x^9 y^{130} v_1^3+85290568110 x^8 y^{131} v_1^3+5038138224 x^7 y^{132} v_1^3+254616348 x^6 y^{133} v_1^3+10683477 x^5 y^{134} v_1^3+355810 x^4 y^{135} v_1^3+8740 x^3 y^{136} v_1^3+138 x^2 y^{137} v_1^3+x y^{138} v_1^3\right) d^{139}}{561699962819551524334627176256400317941991135997449283178714528863427682354650107828030627174491695576642570109689019157276850859934075371559586263407203691001727860055746571888002596713333605194689095847081316427799908501374205952}+O[d]^{140}$