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Euler Calculus

e aim is to construct an integration theory
using the Euler characteristic χ as measure.

A reasonable idea since χ(X ∪ Y) = χ(X) + χ(Y)− χ(X ∩ Y).
But this is only true for finite unions so χ isn’t a true measure.

As a result the Euler integral of a “simple function” is easy to define:∫ ( ∑
finite

λi 1Vi

)
dχ =

∑
finite

λi χ(Vi)

But it behaves poorly under limits:
lim sn = lim s′n doesn’t necessarily imply that

lim
∫
sn dχ = lim

∫
s′n dχ
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e 2010 work of Baryshnikov & Ghrist
Baryshnikov-Ghrist studied this failure of convergence.

ey considered the Euler integrals of two sequences of simple
functions approaching a given continuous function α:∫

αbdχc = lim
n

1

n

∫
bnαc dχ

∫
αddχe = lim

n

1

n

∫
dnαe dχ

Ex:

∫
1[0,1] bdχc = α(1)

∫
1[0,1] ddχe = α(0)

Although these integrals differ, they are in a sense dual.

http://dx.doi.org/10.1073/pnas.0910927107
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A naive starting point
Lemma (Baryshnikov-Ghrist): If α : ∆i → R is affine then:∫

int(∆)
αbdχc = (−1)i infα

∫
int(∆)

αddχe = (−1)i supα

It follows immediately that neither integral is additive.

is made me wonder whethermaybe the answer should instead be:∫
int(∆)

α dχ = (−1)iα(∆̂)

where ∆̂ is the barycenter of∆. At least then it would be additive.

Tentative Definition: For X and α : X→ R simplicial, let:∫
X
α dχ =

∑
∆i∈X

(−1)iα(∆̂)
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Exploration of the integral’s properties

It is not invariant under subdivision.

Ex:
v1

v2v0

Λ v1 + H1 - ΛL v2

v1

v2v0

Λ v1 + H1 - ΛL v2

∫
α dχ = α(∆̂) = 1

3

∑
α(vi)

∫
α dχ = 1

6α(v0) + (13 + 1
6λ) α(v1) + (12 −

1
6λ) α(v2)

ese integrals differ for any 0 ≤ λ ≤ 1.

(We shall return to this example later.)
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Exploration of the integral’s properties, cont’d
But if one carries out a full barycentric subdivision then, after
considerable calculation, one recovers the original integral.

v1

v2v0

∫
∆(1)

α(1) dχ = α(∆̂) =

∫
∆
α dχ

eorem: For any n ≥ 1:∫
X
α dχ =

∫
X(n)

α(n) dχ

where α(n) : X(n) → R(n) is the linear extension of α to the nth
barycentric subdivision X(n) of X.

(is result appears in retrospect to have been a distraction though.)
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Rewriting the sum

e integral may be rewritten:∫
X
α dχ =

∑
∆i∈X

(−1)iα(∆̂)

=
∑
v

α(v)w(v)

where v ranges over each vertex of X and where:

w(v) =
∑
i

(−1)i 1

i+ 1
#
{
i-simplices containing v

}

We next interpret the numberw(v) geometrically.
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Banchoff’s 1967 work on curvature of embedded polyhedra

Let X be a simplicial complex embedded in Rn.

Def (Banchoff): e curvature at a vertex v of X is:

κ(v) =
∑
∆i∈X

(−1)iE(∆i, v)

where the excess angle E(∆i, v) at v of a simplex∆i ⊂ Ri is:

E(∆i, v) =
1

vol(Si−1)

∫
Si−1

[
〈ξ, v〉 ≥ 〈ξ, x〉for all x in∆i

]
dξ

where ξ ranges over the unit sphere Si−1 ⊂ Ri, and [P] =

{
1 if P

0 if ¬P
is the Iverson bracket.

http://projecteuclid.org/euclid.jdg/1214428092


Geometric interpretation of w(v)
Def: Given a simplicial complex X, let dX be the intrinsic metric
which makes each simplex flat and gives each 1-simplex length 1.

eorem: w(v) = κ(v) if one gives X the metric dX.

Ex: is explains why the integral isn’t invariant under subdivision:

Κ � 0

Κ=1�6

Should have integrated like this but integrated like this instead.
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Improved definition of integral

So the integral we’re after depends on the metric structure of the
domain—not just its topology.

Correct Definition: For a metric simplicial complex X and a
simplicial map α : X→ R, let:∫

X
α dχ =

∑
v

α(v)κ(v)

i.e. Euler integration is integration with respect to curvature.

is makes a lot of sense actually…



Improved definition of integral

So the integral we’re after depends on the metric structure of the
domain—not just its topology.

Correct Definition: For a metric simplicial complex X and a
simplicial map α : X→ R, let:∫

X
α dχ =

∑
v

α(v)κ(v)

i.e. Euler integration is integration with respect to curvature.

is makes a lot of sense actually…



Improved definition of integral

So the integral we’re after depends on the metric structure of the
domain—not just its topology.

Correct Definition: For a metric simplicial complex X and a
simplicial map α : X→ R, let:∫

X
α dχ =

∑
v

α(v)κ(v)

i.e. Euler integration is integration with respect to curvature.

is makes a lot of sense actually…



Chern’s 1945 work on the Gauss-Bonnet theorem

Chern-Gauss-Bonnetm: For a compact Riemannian manifoldM:

∫
M
Pf(Ω) = χ(M)

at is, curvature is infinitesimal Euler characteristic.

Simplicial Chern-Gauss-Bonnetm (Banchoff):∑
v

κ(v) = χ(X)

(Note that Banchoff ’s work applies to singular spaces.)

http://dx.doi.org/10.2307/1969302
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e importance of the boundary contribution

Chern-Gauss-Bonnet only applies to compact spaces,
so one should only integrate curvature over compact domains.

Ex: An open interval X = (0, 1) has curvature 0 yet has χ(X) = −1.
But if we write:∫

1(0,1) dχ =

∫ (
1[0,1] − 1{0} − 1{1}

)
dχ

then we can use curvature integration to correctly compute:

= (1/2 + 1/2)− 1− 1 = −1
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Curvature is as general as Euler characteristic
—i.e. it can be defined within any “O-minimal theory”.



Bröcker-Kuppe’s 2000 work on curvature of stratified spaces

Bröcker-Kuppe used Goresky-MacPherson’s work on stratified Morse
theory to define curvature for any “tame” stratified space.

(is includes all spaces in an O-minimal theory.)

Stratified Morse theory
Loosely speaking, a Morse function f : X→ R on a stratified space X
is one which restricts to a classical Morse function on each stratum.

Definition (Goresky-MacPherson): e local Morse data at a critical
point p of f is the pair:

(P,Q) = B(x, δ) ∩
(
f−1[f(x)− ε, f(x) + ε], f−1[f(x)− ε]

)
where B(x, δ) is a closed ball of radius δ centered at x.

Remark: P is always a cone so χ(P,Q) = χ(P)− χ(Q) = 1− χ(Q).

http://dx.doi.org/10.1023/A:1005248711077


Bröcker-Kuppe’s 2000 work on curvature of stratified spaces

Bröcker-Kuppe used Goresky-MacPherson’s work on stratified Morse
theory to define curvature for any “tame” stratified space.

(is includes all spaces in an O-minimal theory.)

Stratified Morse theory
Loosely speaking, a Morse function f : X→ R on a stratified space X
is one which restricts to a classical Morse function on each stratum.

Definition (Goresky-MacPherson): e local Morse data at a critical
point p of f is the pair:

(P,Q) = B(x, δ) ∩
(
f−1[f(x)− ε, f(x) + ε], f−1[f(x)− ε]

)
where B(x, δ) is a closed ball of radius δ centered at x.

Remark: P is always a cone so χ(P,Q) = χ(P)− χ(Q) = 1− χ(Q).

http://dx.doi.org/10.1023/A:1005248711077


Bröcker-Kuppe’s 2000 work on curvature of stratified spaces

Bröcker-Kuppe used Goresky-MacPherson’s work on stratified Morse
theory to define curvature for any “tame” stratified space.

(is includes all spaces in an O-minimal theory.)

Stratified Morse theory
Loosely speaking, a Morse function f : X→ R on a stratified space X
is one which restricts to a classical Morse function on each stratum.

Definition (Goresky-MacPherson): e local Morse data at a critical
point p of f is the pair:

(P,Q) = B(x, δ) ∩
(
f−1[f(x)− ε, f(x) + ε], f−1[f(x)− ε]

)
where B(x, δ) is a closed ball of radius δ centered at x.

Remark: P is always a cone so χ(P,Q) = χ(P)− χ(Q) = 1− χ(Q).

http://dx.doi.org/10.1023/A:1005248711077


Bröcker-Kuppe’s 2000 work on curvature of stratified spaces

Bröcker-Kuppe used Goresky-MacPherson’s work on stratified Morse
theory to define curvature for any “tame” stratified space.

(is includes all spaces in an O-minimal theory.)

Stratified Morse theory
Loosely speaking, a Morse function f : X→ R on a stratified space X
is one which restricts to a classical Morse function on each stratum.

Definition (Goresky-MacPherson): e local Morse data at a critical
point p of f is the pair:

(P,Q) = B(x, δ) ∩
(
f−1[f(x)− ε, f(x) + ε], f−1[f(x)− ε]

)
where B(x, δ) is a closed ball of radius δ centered at x.

Remark: P is always a cone so χ(P,Q) = χ(P)− χ(Q) = 1− χ(Q).

http://dx.doi.org/10.1023/A:1005248711077


Bröcker-Kuppe’s 2000 work on curvature of stratified spaces

Definition (Bröcker-Kuppe): e curvature measure κX(U) of a
Borel set U ⊂ X is:

κX(U) =
1

vol(SN−1)

∫
SN−1

∑
x∈U

( χ(P,Q) for f(x) = 〈ξ, x〉︷ ︸︸ ︷
1− χ

(
B(x, δ) ∩ f−1[f(x)− ε]

) )
dξ

where ξ ranges over the unit sphere SN−1 ⊂ RN.

Remark (Bröcker-Kuppe): If X is “tame” then f(x) = 〈ξ, x〉 is a
stratified Morse function for dSN−1 almost all ξ.

Remark: If X is a simplicial complex then the curvature measure is
concentrated at the vertices, where it agrees with Banchoff’s κ(v).

http://dx.doi.org/10.1023/A:1005248711077
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Example from Bröcker & Kuppe’s 2000 paper

-1� 2 1� 41� 4

1� 2

H 2ΠL -1d l

http://dx.doi.org/10.1023/A:1005248711077
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Euler Integration for Stratified Spaces

Stratified Gauss-Bonnetm (Bröcker-Kuppe):
If X is compact then χ(X) = κX(X), that is:∫

1X dχ =

∫
1X dκX

So we reach our:

Final Definition: For a compact tame stratified space X ⊂ RN and a
continuous function α : X→ R, let:∫

X
α dχ =

∫
X
α dκX

where the right hand side is Lebesgue integration with respect to the
Bröcker-Kuppe curvature measure κX.
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Fubini theorem

e standard Fubini theorem therefore applies:

Fubini m: If f : Y× Z→ Y is the projection then κY×Z ∼= κY × κZ
and: ∫

Y×Z
α dκY×Z =

∫
Y

(∫
Z
α dκZ

)
dκY



Functoriality

For simple functions, Euler integration extends to a functor:

E : spaces→ abelian groups

X 7→ E(X) = {simple functions on X}

X
f−→ Y 7→ group homomorphism E(X)

E(f)−−→ E(Y) defined by:

E(f)(1W)(y) = χ
(
1W ∩ f−1(y)

)

In other words, integration over the fiber is functorial.

(Aside: MacPherson’s theory of Chern classes for singular varieties
is a natural transformation E→ H∗(−,Z).)

http://dx.doi.org/10.2307/1971080
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Functoriality, cont’d

Functoriality is less straightforward for continuous integrands.

A first idea is to let:

Ẽ(X) =
{ ∑

finite

αi

∣∣∣ αi : Ki → R continuous, Ki ⊂ X compact
}

Euler integration works well for these functions.

But there are problems defining a pushforward Ẽ(f) : Ẽ(X)→ Ẽ(Y).

One could optimistically define:

Ẽ(f)(α) =
[
d(f∗(α · κX))

dκY

]
←− the Radon-Nikodym derivative

Functoriality would then follow from the chain rule.
But this derivative generally doesn’t exist.



Functoriality, cont’d

Functoriality is less straightforward for continuous integrands.

A first idea is to let:
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Example of f : X→ Y where the derivative
[
df∗(κX)
dκY

]
doesn’t exist:

Since κY is concentrated at the
two ends, the Lebesgue
decomposition must look like:

f∗(κX) = f∗(κX)
‖κY︸ ︷︷ ︸

=0

κY + f∗(κX)
⊥κY

←− Graph of
[
df∗(κX)

dx

]
= 1

π
√
1−x2
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=0

κY + f∗(κX)
⊥κY

←− Graph of
[
df∗(κX)

dx

]
= 1

π
√
1−x2



Functoriality via measures

So to define a functor, need to consider not functions butmeasures:

X 7→ Ẽ(X) = {signed measures on X}

X
f−→ Y 7→ Ẽ(f) : Ẽ(X)→ Ẽ(Y) defined by:

Ẽ(f)(µ) = f∗(µ), the pushforward measure

Remark: For each space X there is a homomorphism E(X)→ Ẽ(X)
sending 1K 7→ κK for K ⊂ X compact but, as the preceding example
shows, these do not fit into a natural transformation although
pushforward to a point always commutes:

E(X) //

��

Ẽ(X)

��
E(pt) Ẽ(pt)
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A generalization of the Fubini theorem

By the earlier Fubini theorem, pushforward agrees with integration
over the fiber for (metric) fiber bundles.

“eorem”: Under “fairly general conditions”:

f∗(α · κX) =
1

χ
(
f−1(y)

)∫
f−1(y)

α dκf−1(y) · f∗(κX)
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“eorem”: Under “fairly general conditions”:

f∗(α · κX) =
1

χ
(
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Summary

Interpolating between Baryshnikov-Ghrist’s non-additive but dual:∫
X
α bdχc

∫
X
α ddχe

leads to an additive self-dual integral, and this integral is integration
with respect to curvature: ∫

X
α dκX

is integral is as general as the Euler characteristic itself.

In order to extend this integral to a functor, one must rely on the
pushforward of measures.
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