A New Approach to
 Euler Calculus for Continuous Integrands

Carl McTague
mctague.org/carl
University of Southampton
(supported by EPSRC)
from August Johns Hopkins University
ATMCS 5 in Edinburgh
2 July 2012

Gratitude

Gratitude

Gratitude

Euler Calculus

The aim is to construct an integration theory
using the Euler characteristic χ as measure.

Euler Calculus

The aim is to construct an integration theory using the Euler characteristic χ as measure .

A reasonable idea since $\chi(X \cup Y)=\chi(X)+\chi(Y)-\chi(X \cap Y)$. But this is only true for finite unions so χ isn't a true measure.

Euler Calculus

The aim is to construct an integration theory using the Euler characteristic χ as measure.

A reasonable idea since $\chi(X \cup Y)=\chi(X)+\chi(Y)-\chi(X \cap Y)$. But this is only true for finite unions so χ isn't a true measure.

As a result the Euler integral of a "simple function" is easy to define:

$$
\int\left(\sum_{\text {finite }} \lambda_{i} 1_{V_{i}}\right) \mathrm{d} \chi=\sum_{\text {finite }} \lambda_{i} \chi\left(V_{i}\right)
$$

Euler Calculus

The aim is to construct an integration theory using the Euler characteristic χ as measure.

A reasonable idea since $\chi(X \cup Y)=\chi(X)+\chi(Y)-\chi(X \cap Y)$. But this is only true for finite unions so χ isn't a true measure.

As a result the Euler integral of a "simple function" is easy to define:

$$
\int\left(\sum_{\text {finite }} \lambda_{i} 1_{V_{i}}\right) \mathrm{d} \chi=\sum_{\text {finite }} \lambda_{i} \chi\left(V_{i}\right)
$$

But it behaves poorly under limits:
$\lim s_{n}=\lim s_{n}^{\prime}$ doesn't necessarily imply that

$$
\lim \int s_{n} \mathrm{~d} \chi=\lim \int s_{n}^{\prime} \mathrm{d} \chi
$$

The 2010 work of Baryshnikov \& Ghrist

Baryshnikov-Ghrist studied this failure of convergence.
They considered the Euler integrals of two sequences of simple functions approaching a given continuous function α :

$$
\int \alpha\lfloor\mathrm{d} \chi\rfloor=\lim _{n} \frac{1}{n} \int\lfloor n \alpha\rfloor \mathrm{d} \chi \quad \int \alpha\lceil\mathrm{~d} \chi\rceil=\lim _{n} \frac{1}{n} \int\lceil n \alpha\rceil \mathrm{d} \chi
$$

The 2010 work of Baryshnikov \& Ghrist

Baryshnikov-Ghrist studied this failure of convergence.
They considered the Euler integrals of two sequences of simple functions approaching a given continuous function α :

$$
\int \alpha\lfloor\mathrm{d} \chi\rfloor=\lim _{n} \frac{1}{n} \int\lfloor n \alpha\rfloor \mathrm{d} \chi \quad \int \alpha\lceil\mathrm{~d} \chi\rceil=\lim _{n} \frac{1}{n} \int\lceil n \alpha\rceil \mathrm{d} \chi
$$

Ex:

$$
\int 1_{[0,1]}\lfloor\mathrm{d} \chi\rfloor=\alpha(1)
$$

$$
\int 1_{[0,1]}\lceil\mathrm{d} \chi\rceil=\alpha(0)
$$

Although these integrals differ, they are in a sense dual.

A naive starting point

Lemma (Baryshnikov-Ghrist): If $\alpha: \Delta^{i} \rightarrow \mathbf{R}$ is affine then:

$$
\int_{\operatorname{int}(\Delta)} \alpha\lfloor\mathrm{d} \chi\rfloor=(-1)^{i} \inf \alpha \quad \int_{\operatorname{int}(\Delta)} \alpha\lceil\mathrm{d} \chi\rceil=(-1)^{i} \sup \alpha
$$

It follows immediately that neither integral is additive.

A naive starting point

Lemma (Baryshnikov-Ghrist): If $\alpha: \Delta^{i} \rightarrow \mathbf{R}$ is affine then:

$$
\int_{\operatorname{int}(\Delta)} \alpha\lfloor\mathrm{d} \chi\rfloor=(-1)^{i} \inf \alpha \quad \int_{\operatorname{int}(\Delta)} \alpha\lceil\mathrm{d} \chi\rceil=(-1)^{i} \sup \alpha
$$

It follows immediately that neither integral is additive.
This made me wonder whether maybe the answer should instead be:

$$
\int_{\operatorname{int}(\Delta)} \alpha \mathrm{d} \chi=(-1)^{i} \alpha(\hat{\Delta})
$$

where $\hat{\Delta}$ is the barycenter of Δ. At least then it would be additive.

A naive starting point

Lemma (Baryshnikov-Ghrist): If $\alpha: \Delta^{i} \rightarrow \mathbf{R}$ is affine then:

$$
\int_{\operatorname{int}(\Delta)} \alpha\lfloor\mathrm{d} \chi\rfloor=(-1)^{i} \inf \alpha \quad \int_{\operatorname{int}(\Delta)} \alpha\lceil\mathrm{d} \chi\rceil=(-1)^{i} \sup \alpha
$$

It follows immediately that neither integral is additive.
This made me wonder whether maybe the answer should instead be:

$$
\int_{\operatorname{int}(\Delta)} \alpha \mathrm{d} \chi=(-1)^{i} \alpha(\hat{\Delta})
$$

where $\hat{\Delta}$ is the barycenter of Δ. At least then it would be additive.
Tentative Definition: For X and $\alpha: X \rightarrow \mathbf{R}$ simplicial, let:

$$
\int_{X} \alpha \mathrm{~d} \chi=\sum_{\Delta^{i} \in X}(-1)^{i} \alpha(\hat{\Delta})
$$

Exploration of the integral's properties

It is not invariant under subdivision.

Ex:

$\int \alpha \mathrm{d} \chi=\alpha(\hat{\Delta})=\frac{1}{3} \sum \alpha\left(v_{i}\right)$

Exploration of the integral's properties

It is not invariant under subdivision.

Ex:

$\int \alpha \mathrm{d} \chi=\alpha(\hat{\Delta})=\frac{1}{3} \sum \alpha\left(v_{i}\right)$

$$
\int \alpha \mathrm{d} \chi=\frac{1}{6} \alpha\left(v_{0}\right)+\left(\frac{1}{3}+\frac{1}{6} \lambda\right) \alpha\left(v_{1}\right)+\left(\frac{1}{2}-\frac{1}{6} \lambda\right) \alpha\left(v_{2}\right)
$$

These integrals differ for any $0 \leq \lambda \leq 1$.

Exploration of the integral's properties, cont'd

But if one carries out a full barycentric subdivision then, after considerable calculation, one recovers the original integral.

$$
\int_{\Delta^{(1)}} \alpha^{(1)} \mathrm{d} \chi=\alpha(\hat{\Delta})=\int_{\Delta} \alpha \mathrm{d} \chi
$$

Exploration of the integral's properties, cont'd

But if one carries out a full barycentric subdivision then, after considerable calculation, one recovers the original integral.

Theorem: For any $n \geq 1$:

$$
\int_{X} \alpha \mathrm{~d} \chi=\int_{X^{(n)}} \alpha^{(n)} \mathrm{d} \chi
$$

where $\alpha^{(n)}: X^{(n)} \rightarrow \mathbf{R}^{(n)}$ is the linear extension of α to the nth barycentric subdivision $X^{(n)}$ of X.
(This result appears in retrospect to have been a distraction though.)

Rewriting the sum

The integral may be rewritten:

$$
\begin{aligned}
\int_{X} \alpha \mathrm{~d} \chi & =\sum_{\Delta^{i} \in X}(-1)^{i} \alpha(\hat{\Delta}) \\
& =\sum_{v} \alpha(v) \mathrm{w}(v)
\end{aligned}
$$

where v ranges over each vertex of X and where:

$$
\mathrm{w}(v)=\sum_{i}(-1)^{i} \frac{1}{i+1} \#\{i \text {-simplices containing } v\}
$$

Rewriting the sum

The integral may be rewritten:

$$
\begin{aligned}
\int_{X} \alpha \mathrm{~d} \chi & =\sum_{\Delta^{i} \in X}(-1)^{i} \alpha(\hat{\Delta}) \\
& =\sum_{v} \alpha(v) \mathrm{w}(v)
\end{aligned}
$$

where v ranges over each vertex of X and where:

$$
\mathrm{w}(v)=\sum_{i}(-1)^{i} \frac{1}{i+1} \#\{i \text {-simplices containing } v\}
$$

We next interpret the number $\mathrm{w}(v)$ geometrically.

Banchoff's 1967 work on curvature of embedded polyhedra

Let X be a simplicial complex embedded in \mathbf{R}^{n}.
Def (Banchoff): The curvature at a vertex v of X is:

$$
\kappa(v)=\sum_{\Delta^{i} \in X}(-1)^{i} \mathcal{E}\left(\Delta^{i}, v\right)
$$

where the excess angle $\mathcal{E}\left(\Delta^{i}, v\right)$ at v of a simplex $\Delta^{i} \subset \mathbf{R}^{i}$ is:

$$
\mathcal{E}\left(\Delta^{i}, v\right)=\frac{1}{\operatorname{vol}\left(\mathrm{~S}^{i-1}\right)} \int_{\mathrm{S}^{i-1}}\left[\langle\xi, v\rangle \geq\langle\xi, x\rangle \text { for all } x \text { in } \Delta^{i}\right] \mathrm{d} \xi
$$

where ξ ranges over the unit sphere $S^{i-1} \subset \mathbf{R}^{i}$, and $[P]= \begin{cases}1 & \text { if } P \\ 0 & \text { if } \neg P\end{cases}$ is the Iverson bracket.

Geometric interpretation of $\mathrm{w}(v)$

Def: Given a simplicial complex X, let d_{X} be the intrinsic metric which makes each simplex flat and gives each 1 -simplex length 1 .

Geometric interpretation of $\mathrm{w}(v)$

Def: Given a simplicial complex X, let d_{X} be the intrinsic metric which makes each simplex flat and gives each 1-simplex length 1.

Theorem: $\mathrm{w}(v)=\kappa(v)$ if one gives X the metric d_{X}.

Geometric interpretation of $\mathrm{w}(v)$

Def: Given a simplicial complex X, let d_{X} be the intrinsic metric which makes each simplex flat and gives each 1-simplex length 1.

Theorem: $\mathrm{w}(v)=\kappa(v)$ if one gives X the metric d_{X}.
Ex: This explains why the integral isn't invariant under subdivision:

Should have integrated like this
but integrated like this instead.

Improved definition of integral

So the integral we're after depends on the metric structure of the domain-not just its topology.

Improved definition of integral

So the integral we're after depends on the metric structure of the domain-not just its topology.

Correct Definition: For a metric simplicial complex X and a simplicial map $\alpha: X \rightarrow \mathbf{R}$, let:

$$
\int_{X} \alpha \mathrm{~d} \chi=\sum_{v} \alpha(v) \kappa(v)
$$

Improved definition of integral

So the integral we're after depends on the metric structure of the domain-not just its topology.

Correct Definition: For a metric simplicial complex X and a simplicial map $\alpha: X \rightarrow \mathbf{R}$, let:

$$
\int_{X} \alpha \mathrm{~d} \chi=\sum_{v} \alpha(v) \kappa(v)
$$

i.e. Euler integration is integration with respect to curvature.

This makes a lot of sense actually...

Chern's 1945 work on the Gauss-Bonnet theorem

Chern-Gauss-Bonnet Thm: For a compact Riemannian manifold M :

$$
\int_{M} \operatorname{Pf}(\Omega)=\chi(M)
$$

That is, curvature is infinitesimal Euler characteristic.

Chern's 1945 work on the Gauss-Bonnet theorem

Chern-Gauss-Bonnet Thm: For a compact Riemannian manifold M with boundary ∂M :

$$
\int_{M} \operatorname{Pf}(\Omega)-\int_{\partial M} \nu^{*} \Phi=\chi(M)
$$

That is, curvature is infinitesimal Euler characteristic.

Chern's 1945 work on the Gauss-Bonnet theorem

Chern-Gauss-Bonnet Thm: For a compact Riemannian manifold M with boundary ∂M :

$$
\int_{M} \operatorname{Pf}(\Omega)-\int_{\partial M} \nu^{*} \Phi=\chi(M)
$$

That is, curvature is infinitesimal Euler characteristic.

Simplicial Chern-Gauss-Bonnet Thm (Banchoff):

$$
\sum_{v} \kappa(v)=\chi(X)
$$

(Note that Banchoff's work applies to singular spaces.)

The importance of the boundary contribution

Chern-Gauss-Bonnet only applies to compact spaces, so one should only integrate curvature over compact domains.

The importance of the boundary contribution

Chern-Gauss-Bonnet only applies to compact spaces, so one should only integrate curvature over compact domains.

Ex: An open interval $X=(0,1)$ has curvature 0 yet has $\chi(X)=-1$. But if we write:

$$
\int 1_{(0,1)} \mathrm{d} \chi=\int\left(1_{[0,1]}-1_{\{0\}}-1_{\{1\}}\right) \mathrm{d} \chi
$$

then we can use curvature integration to correctly compute:

$$
=(1 / 2+1 / 2)-1-1=-1
$$

Curvature is as general as Euler characteristic -i.e. it can be defined within any "O-minimal theory".

Bröcker-Kuppe's 2000 work on curvature of stratified spaces

Bröcker-Kuppe used Goresky-MacPherson's work on stratified Morse theory to define curvature for any "tame" stratified space.
(This includes all spaces in an O-minimal theory.)

Bröcker-Kuppe's 2000 work on curvature of stratified spaces

Bröcker-Kuppe used Goresky-MacPherson's work on stratified Morse theory to define curvature for any "tame" stratified space.
(This includes all spaces in an O-minimal theory.)

Stratified Morse theory

Loosely speaking, a Morse function $f: X \rightarrow \mathbf{R}$ on a stratified space X is one which restricts to a classical Morse function on each stratum.

Bröcker-Kuppe's 2000 work on curvature of stratified spaces

Bröcker-Kuppe used Goresky-MacPherson's work on stratified Morse theory to define curvature for any "tame" stratified space.
(This includes all spaces in an O-minimal theory.)

Stratified Morse theory

Loosely speaking, a Morse function $f: X \rightarrow \mathbf{R}$ on a stratified space X is one which restricts to a classical Morse function on each stratum.

Definition (Goresky-MacPherson): The local Morse data at a critical point p of f is the pair:

$$
(P, Q)=\mathrm{B}(x, \delta) \cap\left(f^{-1}[f(x)-\epsilon, f(x)+\epsilon], f^{-1}[f(x)-\epsilon]\right)
$$

where $\mathrm{B}(x, \delta)$ is a closed ball of radius δ centered at x.

Bröcker-Kuppe's 2000 work on curvature of stratified spaces

Bröcker-Kuppe used Goresky-MacPherson's work on stratified Morse theory to define curvature for any "tame" stratified space.
(This includes all spaces in an O-minimal theory.)

Stratified Morse theory

Loosely speaking, a Morse function $f: X \rightarrow \mathbf{R}$ on a stratified space X is one which restricts to a classical Morse function on each stratum.

Definition (Goresky-MacPherson): The local Morse data at a critical point p of f is the pair:

$$
(P, Q)=\mathrm{B}(x, \delta) \cap\left(f^{-1}[f(x)-\epsilon, f(x)+\epsilon], f^{-1}[f(x)-\epsilon]\right)
$$

where $\mathrm{B}(x, \delta)$ is a closed ball of radius δ centered at x.
Remark: P is always a cone so $\chi(P, Q)=\chi(P)-\chi(Q)=1-\chi(Q)$.

Bröcker-Kuppe's 2000 work on curvature of stratified spaces

Definition (Bröcker-Kuppe): The curvature measure $\kappa_{X}(U)$ of a Borel set $U \subset X$ is:

$$
\kappa_{X}(U)=\frac{1}{\operatorname{vol}\left(S^{N-1}\right)} \int_{S^{N-1}} \sum_{x \in U}(\overbrace{1-\chi\left(\mathrm{B}(x, \delta) \cap f^{-1}[f(x)-\epsilon]\right)}^{\chi(P, Q) \text { for } f(x)=\langle\xi, x\rangle}) \mathrm{d} \xi
$$

where ξ ranges over the unit sphere $S^{N-1} \subset \mathbf{R}^{N}$.

Bröcker-Kuppe's 2000 work on curvature of stratified spaces

Definition (Bröcker-Kuppe): The curvature measure $\kappa_{X}(U)$ of a Borel set $U \subset X$ is:

$$
\kappa_{X}(U)=\frac{1}{\operatorname{vol}\left(S^{N-1}\right)} \int_{S^{N-1}} \sum_{x \in U}(\overbrace{1-\chi\left(\mathrm{B}(x, \delta) \cap f^{-1}[f(x)-\epsilon]\right)}^{\chi(P, Q) \text { for } f(x)=\langle\xi, \chi\rangle}) \mathrm{d} \xi
$$

where ξ ranges over the unit sphere $S^{N-1} \subset \mathbf{R}^{N}$.
Remark (Bröcker-Kuppe): If X is "tame" then $f(x)=\langle\xi, x\rangle$ is a stratified Morse function for dS^{N-1} almost all ξ.

Bröcker-Kuppe's 2000 work on curvature of stratified spaces

Definition (Bröcker-Kuppe): The curvature measure $\kappa_{X}(U)$ of a Borel set $U \subset X$ is:

$$
\kappa_{X}(U)=\frac{1}{\operatorname{vol}\left(S^{N-1}\right)} \int_{S^{N-1}} \sum_{x \in U}(\overbrace{1-\chi\left(\mathrm{B}(x, \delta) \cap f^{-1}[f(x)-\epsilon]\right)}^{\chi(P, Q) \text { for } f(x)=\langle\xi, \chi\rangle}) \mathrm{d} \xi
$$

where ξ ranges over the unit sphere $S^{N-1} \subset \mathbf{R}^{N}$.
Remark (Bröcker-Kuppe): If X is "tame" then $f(x)=\langle\xi, x\rangle$ is a stratified Morse function for dS^{N-1} almost all ξ.

Remark: If X is a simplicial complex then the curvature measure is concentrated at the vertices, where it agrees with Banchoff's $\kappa(v)$.

Example from Bröcker \& Kuppe’s 2000 paper

Example from Bröcker \& Kuppe’s 2000 paper

Euler Integration for Stratified Spaces

Stratified Gauss-Bonnet Thm (Bröcker-Kuppe):
If X is compact then $\chi(X)=\kappa_{X}(X)$, that is:

$$
\int 1_{X} \mathrm{~d} \chi=\int 1_{X} \mathrm{~d} \kappa_{X}
$$

Euler Integration for Stratified Spaces

Stratified Gauss-Bonnet Thm (Bröcker-Kuppe):
If X is compact then $\chi(X)=\kappa_{X}(X)$, that is:

$$
\int 1_{X} \mathrm{~d} \chi=\int 1_{X} \mathrm{~d} \kappa_{X}
$$

So we reach our:
Final Definition: For a compact tame stratified space $X \subset \mathbf{R}^{N}$ and a continuous function $\alpha: X \rightarrow \mathbf{R}$, let:

$$
\int_{X} \alpha \mathrm{~d} \chi=\int_{X} \alpha \mathrm{~d} \kappa_{X}
$$

where the right hand side is Lebesgue integration with respect to the Bröcker-Kuppe curvature measure κ_{X}.

Fubini theorem

The standard Fubini theorem therefore applies:
Fubini Thm: If $f: Y \times Z \rightarrow Y$ is the projection then $\kappa_{Y \times Z} \cong \kappa_{Y} \times \kappa_{Z}$ and:

$$
\int_{Y \times Z} \alpha \mathrm{~d} \kappa_{Y \times Z}=\int_{Y}\left(\int_{Z} \alpha \mathrm{~d} \kappa_{Z}\right) \mathrm{d} \kappa_{Y}
$$

Functoriality

For simple functions, Euler integration extends to a functor:
E : spaces \rightarrow abelian groups

$$
X \quad \mapsto \quad \mathrm{E}(X)=\{\text { simple functions on } X\}
$$

$X \xrightarrow{f} Y \quad \mapsto \quad$ group homomorphism $\mathrm{E}(X) \xrightarrow{\mathrm{E}(f)} \mathrm{E}(Y)$ defined by:

$$
\mathrm{E}(f)\left(1_{W}\right)(y)=\chi\left(1_{W} \cap f^{-1}(y)\right)
$$

Functoriality

For simple functions, Euler integration extends to a functor:
E: spaces \rightarrow abelian groups
$X \quad \mapsto \quad \mathrm{E}(X)=\{$ simple functions on $X\}$
$X \xrightarrow{f} Y \quad \mapsto \quad$ group homomorphism $\mathrm{E}(X) \xrightarrow{\mathrm{E}(f)} \mathrm{E}(Y)$ defined by:

$$
\mathrm{E}(f)\left(1_{W}\right)(y)=\chi\left(1_{W} \cap f^{-1}(y)\right)
$$

In other words, integration over the fiber is functorial.

Functoriality

For simple functions, Euler integration extends to a functor:
E : spaces \rightarrow abelian groups
$X \quad \mapsto \quad \mathrm{E}(X)=\{$ simple functions on $X\}$
$X \xrightarrow{f} Y \quad \mapsto \quad$ group homomorphism $\mathrm{E}(X) \xrightarrow{\mathrm{E}(f)} \mathrm{E}(Y)$ defined by:

$$
\mathrm{E}(f)\left(1_{W}\right)(y)=\chi\left(1_{W} \cap f^{-1}(y)\right)
$$

In other words, integration over the fiber is functorial.
(Aside: MacPherson's theory of Chern classes for singular varieties is a natural transformation $\mathrm{E} \rightarrow \mathrm{H}_{*}(-, \mathbf{Z})$.)

Functoriality, cont'd

Functoriality is less straightforward for continuous integrands.

Functoriality, cont'd

Functoriality is less straightforward for continuous integrands.
A first idea is to let:

$$
\tilde{\mathrm{E}}(X)=\left\{\sum_{\text {finite }} \alpha_{i} \mid \alpha_{i}: K_{i} \rightarrow \mathbf{R} \text { continuous, } K_{i} \subset X \text { compact }\right\}
$$

Euler integration works well for these functions.

Functoriality, cont'd

Functoriality is less straightforward for continuous integrands.
A first idea is to let:

$$
\tilde{\mathrm{E}}(X)=\left\{\sum_{\text {finite }} \alpha_{i} \mid \alpha_{i}: K_{i} \rightarrow \mathbf{R} \text { continuous, } K_{i} \subset X \text { compact }\right\}
$$

Euler integration works well for these functions.
But there are problems defining a pushforward $\tilde{\mathrm{E}}(f): \tilde{\mathrm{E}}(X) \rightarrow \tilde{\mathrm{E}}(Y)$.
One could optimistically define:

$$
\tilde{\mathrm{E}}(f)(\alpha)=\left[\frac{\mathrm{d}\left(f_{*}\left(\alpha \cdot \kappa_{X}\right)\right)}{\mathrm{d} \kappa_{Y}}\right] \longleftarrow \text { the Radon-Nikodym derivative }
$$

Functoriality would then follow from the chain rule.
But this derivative generally doesn't exist.

Example of $f: X \rightarrow Y$ where the derivative $\left[\frac{\mathrm{d} f_{*}\left(\kappa_{X}\right)}{\mathrm{d} \kappa_{Y}}\right]$ doesn't exist:

\longleftarrow Graph of $\left[\frac{\mathrm{d} f_{*}\left(\kappa_{X}\right)}{\mathrm{d} x}\right]=\frac{1}{\pi \sqrt{1-x^{2}}}$

Example of $f: X \rightarrow Y$ where the derivative $\left[\frac{\mathrm{d} f_{*}\left(\kappa_{X}\right)}{\mathrm{d} \kappa_{Y}}\right]$ doesn't exist:

Since κ_{Y} is concentrated at the two ends, the Lebesgue decomposition must look like:

$$
f_{*}\left(\kappa_{X}\right)=\underbrace{f_{*}\left(\kappa_{X}\right)^{\| \kappa_{Y}}}_{=0} \kappa_{Y}+f_{*}\left(\kappa_{X}\right)^{\perp \kappa_{Y}}
$$

\longleftarrow Graph of $\left[\frac{\mathrm{d} f_{*}\left(\kappa_{X}\right)}{\mathrm{d} x}\right]=\frac{1}{\pi \sqrt{1-x^{2}}}$

Functoriality via measures

So to define a functor, need to consider not functions but measures:

$$
\begin{array}{rll}
X & \mapsto & \tilde{\mathrm{E}}(X)=\{\text { signed measures on } X\} \\
X \xrightarrow{f} Y & \mapsto & \tilde{\mathrm{E}}(f): \tilde{\mathrm{E}}(X) \rightarrow \tilde{\mathrm{E}}(Y) \text { defined by: } \\
& & \tilde{\mathrm{E}}(f)(\mu)=f_{*}(\mu), \text { the pushforward measure }
\end{array}
$$

Functoriality via measures

So to define a functor, need to consider not functions but measures:

$$
\begin{array}{rll}
X & \mapsto & \tilde{\mathrm{E}}(X)=\{\text { signed measures on } X\} \\
X \xrightarrow{f} Y & \mapsto & \tilde{\mathrm{E}}(f): \tilde{\mathrm{E}}(X) \rightarrow \tilde{\mathrm{E}}(Y) \text { defined by: } \\
& & \tilde{\mathrm{E}}(f)(\mu)=f_{*}(\mu), \text { the pushforward measure }
\end{array}
$$

Remark: For each space X there is a homomorphism $\mathrm{E}(X) \rightarrow \tilde{\mathrm{E}}(X)$ sending $1_{K} \mapsto \kappa_{K}$ for $K \subset X$ compact but, as the preceding example shows, these do not fit into a natural transformation although pushforward to a point always commutes:

A generalization of the Fubini theorem

By the earlier Fubini theorem, pushforward agrees with integration over the fiber for (metric) fiber bundles.

A generalization of the Fubini theorem

By the earlier Fubini theorem, pushforward agrees with integration over the fiber for (metric) fiber bundles.
"Theorem": Under "fairly general conditions":

$$
f_{*}\left(\alpha \cdot \kappa_{X}\right)=\frac{1}{\chi\left(f^{-1}(y)\right)} \int_{f^{-1}(y)} \alpha \mathrm{d} \kappa_{f^{-1}(y)} \cdot f_{*}\left(\kappa_{X}\right)
$$

Summary

Interpolating between Baryshnikov-Ghrist's non-additive but dual:

$$
\int_{X} \alpha\lfloor\mathrm{~d} \chi\rfloor \quad \int_{X} \alpha\lceil\mathrm{~d} \chi\rceil
$$

leads to an additive self-dual integral, and this integral is integration with respect to curvature:

$$
\int_{X} \alpha \mathrm{~d} \kappa_{X}
$$

This integral is as general as the Euler characteristic itself.
In order to extend this integral to a functor, one must rely on the pushforward of measures.

References

- Thomas Banchoff. Critical points and curvature for embedded polyhedra. J. Differential Geometry, 1:245-256, 1967, MR0225327.
- Yuliy Baryshnikov \& Robert Ghrist. Euler integration over definable functions. Proc. Natl. Acad. Sci. USA, 107(21):9525-9530, 2010, MR2653583.
- Ludwig Bröcker \& Martin Kuppe. Integral geometry of tame sets. Geom. Dedicata, 82(1-3):285-323, 2000, MR1789065.
- Shiing-shen Chern. A simple intrinsic proof of the Gauss-Bonnet formula for closed Riemannian manifolds. Ann. of Math. (2), 45:747-752, 1944, MR0011027.
- Robert MacPherson. Chern classes for singular algebraic varieties. Ann. of Math. (2), 100:423-432, 1974, MR0361141.

