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e Euler characteristic

An integer associated to a space:

χ(polyhedron) = #{vertices} − #{edges}+ #{faces}

is number is independent of triangulation!

Ex: χ(sphere) = 2, χ(torus) = 0, χ(surface of genus g) = 2− 2g.

More generally, if a space X can be decomposed into a finite number
of “open cells”:

X =
⊔
α

Cα then χ(X) =
∑
α

(−1)dim(Cα)

is number is independent of cell decomposition, even invariant
under continuous deformation (homeomorphism, and for compact
spaces even homotopy equivalence).
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Euler Calculus for simple functions
(…, Blaschke 1936, Hadwiger 1956, Rota 1971,

Schapira 1988, Viro 1988, Chen 1992, …)

e idea is to perform integration
using the Euler characteristic χ as measure.

A reasonable idea since χ(X ∪ Y) = χ(X) + χ(Y)− χ(X ∩ Y).
But strange too since χ(pt) = 1,

and χ(open interval) = −1.

e Euler integral of a “simple function” is easy to define:∫ ( ∑
finite

ai 1Vi

)
dχ =

∑
finite

ai χ(Vi) ai ∈ R, Vi ⊂ X

(Known as a “constructible function” in algebraic geometry.)
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For simple functions, Euler integration extends to a functor

Multiplicativity χ(Y× Z) = χ(Y) · χ(Z) implies the Fubini theorem
for simple functions:∫

Y

(∫
Z
s dχ

)
dχ =

∫
Y×Z

s dχ =

∫
Z

(∫
Y
s dχ

)
dχ

More generally, it implies that integrating along the fiber of a map
f : Y → X preservers the integral:∫

Y
s dχ =

∫
X

(∫
f−1(x)

s dχ︸ ︷︷ ︸
f∗(s)

)
dχ

is pushforward f∗ is functorial (f ◦ g)∗ = f∗ ◦ g∗.
If c : X → pt then c∗ is Euler integration.
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Functoriality illustrated
Ex: f : S2 → [−1, 1].

generic fiber χ(S1) = 0
exceptional fiber χ(pt) = 1

2 = χ(S2) =
∫
1S2 dχ =

∫
f∗(1S2)dχ =

∫
(1{1} + 1{−1})dχ = 2
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Functoriality in algebraic geometry

Riemann-Hurwitz formula: Applied to a ramified cover of Riemann
surfaces f : X → Y, functoriality gives:

χ(X) = deg(f) · χ(Y)−
∑
x∈X

(ex − 1)

where ex is the ramification index of x.

e higher direct image (Grothendieck 1952) Rf! lifts the
pushforward f∗ to sheaves: the Euler characteristics of the stalks of a
sheaf F ∈ Db(X) determine a simple function χ(F) and:

f∗(χ(F)) = χ(Rf!(F))

Grothendieck-Deligne-MacPherson formalized Chern classes for
singular varieties as a natural transformation E → H∗(−,Z).
Functoriality lets one compare with smooth resolutions.

http://dx.doi.org/10.2307/1971080
http://dx.doi.org/10.2307/1971080
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Functoriality is useful for data analysis

Functoriality enables tomographic-type information extraction from
projections of high-dimensional datasets.

Baryshnikov-Ghrist 2009: Compute the total number of observable
targets (eg persons, vehicles, landmarks) in a region using local
counts performed by a network of sensors, each of which measures
the number of targets nearby but neither their identities nor any
positional information:

#{targets} =

∫
(local counts) dχ

Proof: Consider targets as tubes in spacetime. A tube has χ = 1 so:

#{targets} =

∫
1tubes dχ =

∫
f∗(1tubes) dχ =

∫
(local counts) dχ

where f : spacetime → space is the projection.
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What about non-simple integrands?

Lebesgue integral is determined by its values on simple functions.
Eg, if a sequence of simple functions converges uniformly:

sn → f then lim
∫

sn dµ =

∫
f dµ

Not so for χ since χ is only finitely and not countably additive so
doesn’t fit into the framework of measure theory.

As a result:
lim sn = lim s′n doesn’t necessarily imply that

lim
∫
sn dχ = lim

∫
s′n dχ

even if convergence
is uniform.
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e 2010 work of Baryshnikov & Ghrist

Baryshnikov-Ghrist studied this failure of convergence.

ey considered the Euler integrals of two sequences of simple
functions converging to a given continuous function α:∫

αbdχc = lim
n→∞

1

n

∫
bnαc dχ

∫
αddχe = lim

n→∞

1

n

∫
dnαe dχ

Ex:

∫
id[0,1] bdχc = 1

∫
id[0,1] ddχe = 0

http://dx.doi.org/10.1073/pnas.0910927107
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e 2010 work of Baryshnikov & Ghrist

More generally:

Lemma (Baryshnikov-Ghrist): If α : ∆i → R is affine then:∫
int(∆)

αbdχc = (−1)i infα
∫
int(∆)

αddχe = (−1)i supα

Since inf and sup are not additive, neither of these integrals is.

http://dx.doi.org/10.1073/pnas.0910927107
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Basic Question:
Can Euler integration be extended to continuous
integrands in a way which is additive?

Ex: How to integrate id[0,1]?
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For a fresh perspective on the problem,
consider it within the SIMPLICIAL context.

So for the time being:
I A space is a simplicial complex X.
I A simple function on X is an R-linear combination of

(the characteristic functions of) its simplices.
I A continuous function on X is a simplicial map α : X → R

i.e. a function defined by assigning a real number to each vertex
and extending linearly to the interior of each simplex.
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In this context there is a unique simple function which best
approximates a given continuous function α : X → R, namely:∑

∆∈X
α(∆̂) · 1int(∆)

where ∆̂ is the barycenter of∆.

Ex: Regarding id[0,1] as a simplicial map∆1 → R:

∫
(1{0} + 1{1} +

1
2 · 1(0,1))dχ = 0 + 1− 1

2 = 1
2
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Since χ(int(∆)i) = (−1)i this approximation has Euler integral:∑
∆i∈X

(−1)iα(∆̂)

Tentative Definition
For X and α : X → R simplicial let:∫

X
α dχ =

∑
∆i∈X

(−1)iα(∆̂)

where the sum runs over each simplex∆ of X.

At the very least this integral is additive!
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Exploration of the tentative definition’s properties

It is not invariant under subdivision.

Ex:
v1

v2v0

Λ v1 + H1 - ΛL v2

v1

v2v0

Λ v1 + H1 - ΛL v2

∫
α dχ = α(∆̂) = 1

3

∑
α(vi)

∫
α dχ = 1

6α(v0) + (13 + 1
6λ) α(v1) + (12 − 1

6λ) α(v2)

ese integrals differ for any 0 ≤ λ ≤ 1.

(We shall return to this example later.)
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Exploration of the tentative definition’s properties, cont’d
But if one carries out a full barycentric subdivision then, after
considerable calculation, one recovers the original integral.

v1

v2v0

∫
∆(1)

α(1) dχ = α(∆̂) =

∫
∆
α dχ

eorem: For any n ≥ 1:∫
X
α dχ =

∫
X(n)

α(n) dχ

where α(n) : X(n) → R(n) is the linear extension of α to the nth
barycentric subdivision X(n) of X.

(is result appears in retrospect to have been a distraction though.)
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Rewriting the sum

e tentative definition may be rewritten:∫
X
α dχ =

∑
∆i∈X

(−1)iα(∆̂)

=
∑
v

α(v)w(v)

where v ranges over each vertex of X and where:

w(v) =
∑
i

(−1)i
1

i+ 1
#
{
i-simplices containing v

}

is number has a geometric interpretation!
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Banchoff’s 1967 work on curvature of embedded polyhedra

Let X be a simplicial complex embedded in Rn.

Def (Banchoff): e curvature at a vertex v of X is:

κ(v) =
∑
∆i∈X

(−1)iE(∆i, v)

where the excess angle E(∆i, v) at v of a simplex∆i ⊂ Ri is:

E(∆i, v) =
1

vol(Si−1)

∫
Si−1

[
〈ξ, v〉 ≥ 〈ξ, x〉for all x in∆i

]
dξ

where ξ ranges over the unit sphere Si−1 ⊂ Ri, and [P] =

{
1 if P

0 if ¬P
is the Iverson bracket.

http://projecteuclid.org/euclid.jdg/1214428092


Geometric interpretation of w(v)
Def: Given a simplicial complex X, let dX be the intrinsic metric
which makes each simplex flat and gives each 1-simplex length 1.

eorem: w(v) = κ(v) if one gives X the metric dX.

Ex: is explains why the integral isn’t invariant under subdivision:

Κ � 0

Κ=1�6

Should have integrated like this but integrated like this instead.
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Improved definition of integral

So the integral we’re after depends on the metric structure of the
domain—not just its topology.

Corrected Definition: For a metric simplicial complex X and a
simplicial map α : X → R, let:∫

X
α dχ =

∑
v

α(v)κ(v)

i.e. Euler integration is integration with respect to curvature.

is makes a lot of sense actually…
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Generalized Gauss-Bonnet theorem (1945)

Generalized Gauss-Bonneteorem:
For a compact Riemannian manifoldM:∫

M
Pf(Ω) = χ(M)

at is, curvature is infinitesimal Euler characteristic.

Simplicial Generalized Gauss-Bonneteorem (Banchoff):∑
v

κ(v) = χ(X)

(Banchoff ’s work applies to singular simplicial complexes.)

http://dx.doi.org/10.2307/1969302
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e importance of the boundary contribution

e Generalized Gauss-Bonnet only applies to compact spaces,
so one should only integrate curvature over compact domains.

Ex: An open interval X = (0, 1) has curvature 0 yet has χ(X) = −1.

But if we write:∫
1(0,1) dχ =

∫ (
1[0,1] − 1{0} − 1{1}

)
dχ

then we can use curvature integration to correctly compute:

= (1/2 + 1/2)− 1− 1 = −1
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Curvature is as general as Euler characteristic
—i.e. it can be defined within any “O-minimal theory”.



Bröcker-Kuppe’s 2000 work on curvature of stratified spaces

Bröcker-Kuppe used Goresky-MacPherson’s work on stratified Morse
theory to define curvature for any “tamely” stratified space.

(is includes all spaces in an O-minimal theory.)

Stratified Morse theory
Loosely speaking, a Morse function f : Y → R on a stratified space
Y ⊂ RN is one which restricts to a classical Morse function on each
stratum.

Definition (Goresky-MacPherson): e local Morse data at a critical
point y of f is the pair:

(P,Q) = B(y, δ) ∩
(
f−1[f(y)− ε, f(y) + ε], f−1[f(y)− ε]

)
where B(y, δ) is a closed ball of radius δ centered at y.

Remark: P is always a cone so χ(P,Q) = χ(P)− χ(Q) = 1− χ(Q).
is number is called the index of f at y and denoted α(f, y).
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Bröcker-Kuppe’s 2000 work on curvature of stratified spaces

If Y is compact then:

χ(Y) =
∑
y∈Y

α(f, y)

Definition (Bröcker-Kuppe): e curvature measure κX(U) of a
Borel set U ⊂ X is:

κX(U) =
1

vol(SN−1)

∫
SN−1

∑
y∈U

α(fx, y)dx

where fx(y) = 〈x, y〉 and x ranges over the unit sphere SN−1 ⊂ RN.

Remark (Bröcker-Kuppe): If X is “tamely stratified” then fx is a
stratified Morse function for dSN−1 almost all x.

Remark: If X is a simplicial complex then the curvature measure is
concentrated at the vertices, where it agrees with Banchoff’s κ(v).

http://dx.doi.org/10.1023/A:1005248711077
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Example from Bröcker & Kuppe’s 2000 paper

-1� 2 1� 41� 4

1� 2

H 2ΠL -1d l
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General Definition
Stratified Gauss-Bonneteorem (Bröcker-Kuppe):

If Y is compact then χ(Y) = κY(Y), that is:∫
1Y dχ =

∫
1Y dκY

So we reach:

Generalized Definition: For a compact tamely stratified space
Y ⊂ RN and a continuous function α : Y → R, let:∫

Y
α dχ =

∫
Y
α dκY

where the right hand side is Lebesgue integration with respect to the
Bröcker-Kuppe curvature measure κY.

More generally, given continuous functions αi : Zi → R on compact
tamely stratified subspaces Zi ⊂ Y ⊂ RN, let:∫

Y

∑
finite

αi dχ =
∑
finite

∫
Zi
αi dκZi
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Fubinieorem

Since:

κY×Z = κY × κZ

the Fubini eorem holds:

∫
Y

(∫
Z
α dκZ

)
dκY =

∫
Y×Z

α dκY×Z =

∫
Z

(∫
Y
α dκY

)
dκZ



Basic Question:
Does curvature integration extend to a functor?



Ex: Revisiting the projection S2 → [−1, 1]

So although the classical pushforward depends only on the intrinsic
geometry of the fibers, the curvature pushforward depends also on the
extrinsic geometry of the fibers!
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Karcher’s formulation (1999) of the O’Neill formulas (1966)
A Riemannian submersion f : M → N splits TM into vertical and
horizontal components:

TM ∼= VM⊕ HM

LetH : TM → TM be the orthogonal projection onto HM.

Karcher’s Formulas
If V is vertical and H horizontal then for any X, Y:

R(X, Y)V = −
inHM︷ ︸︸ ︷

R(X, Y)H · V +

in VM︷ ︸︸ ︷
RV(X, Y)V −

[
∇XH,∇YH

]
V

R(X, Y)H = R(X, Y)H · H︸ ︷︷ ︸
in VM

+RH(X, Y)H−
[
∇XH,∇YH

]
H︸ ︷︷ ︸

inHM

where RH,RV are the curvatures of the induced connections onHM,VM.

Note: If X, Y are vertical then the second part of the second equation
is the Gauss equation of the fibers.
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e Pfaffian
e Generalized Gauss-Bonnet integrand is a certain multiple of the
Pfaffian of the skew-symmetric matrix of 2-forms:[

g
(
R(X, Y)Vi,Vj

)
g
(
R(X, Y)Hi,Vj

)
g
(
R(X, Y)Vi,Hj

)
g
(
R(X, Y)Hi,Hj

) ]
dX dY

where V1, . . . ,Vk,Hk+1, . . . ,Hn is a basis for TM consisting of
vertical and horizontal vectors.

Karcher’s formula lets us write:[
g
((
RV(X, Y)− [∇XH,∇YH]

)
Vi,Vj

)
−g

(
R(X, Y)H · Hi,Vj

)
g
(
R(X, Y)H · Vi,Hj

)
g
((
RH(X, Y)− [∇XH,∇YH]

)
Hi,Hj

) ]
dX dYIf the fibers are totally geodesic then∇H = 0 and it reduces to:[

g
((
RV(X, Y)Vi,Vj

)
0

0 g
((
RH(X, Y)Hi,Hj

) ]
dX dY

so in this case the curvature splits Pf(ΩM) = Pf(ΩN) ∧ Pf(ΩF) and
f∗(κM) = χ(F) · κN.
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Classical pushforward as limit of curvature pushforward

Shrinking the fiber (“Berger Deformation”): gε = gV + ε · gH.
“eorem”: f∗(κεX) → f∗(1X) · κY as ε → 0.
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Summary

Interpolating between Baryshnikov-Ghrist’s non-additive:∫
X
α bdχc

∫
X
α ddχe

leads to an additive integral, and this integral is integration with
respect to curvature: ∫

X
α dκX

is integral is as general as the Euler characteristic itself.

It extends to a functor whose pushforward reflects both the intrinsic
and extrinsic geometry of fibers.

is pushforward approaches the classical pushforward as one
shrinks the fibers.
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