# New Applications of Differential Geometry to Big Data 

Carl McTague mctague.org/carl



Johns Hopkins
University of Edinburgh
Topology Seminar
9 June 2014

## The Euler characteristic

An integer associated to a space:

$$
\chi(\text { polyhedron })=\#\{\text { vertices }\}-\#\{\text { edges }\}+\#\{\text { faces }\}
$$

This number is independent of triangulation!
Ex: $\chi($ sphere $)=2, \chi$ (torus $)=0, \chi($ surface of genus $g)=2-2 g$.

## The Euler characteristic

An integer associated to a space:

$$
\chi(\text { polyhedron })=\#\{\text { vertices }\}-\#\{\text { edges }\}+\#\{\text { faces }\}
$$

This number is independent of triangulation!
Ex: $\chi($ sphere $)=2, \chi($ torus $)=0, \chi($ surface of genus $g)=2-2 g$.
More generally, if a space $X$ can be decomposed into a finite number of "open cells":

$$
X=\bigsqcup_{\alpha} C_{\alpha} \quad \text { then } \quad \chi(X)=\sum_{\alpha}(-1)^{\operatorname{dim}\left(C_{\alpha}\right)}
$$

This number is independent of cell decomposition, even invariant under continuous deformation (homeomorphism, and for compact spaces even homotopy equivalence).

## Euler Calculus for simple functions

(..., Blaschke 1936, Hadwiger 1956, Rota 1971, Schapira 1988, Viro 1988, Chen 1992, ...)

The idea is to perform integration
using the Euler characteristic $\chi$ as measure .

## Euler Calculus for simple functions

(..., Blaschke 1936, Hadwiger 1956, Rota 1971, Schapira 1988, Viro 1988, Chen 1992, ...)

The idea is to perform integration
using the Euler characteristic $\chi$ as measure .
A reasonable idea since $\chi(X \cup Y)=\chi(X)+\chi(Y)-\chi(X \cap Y)$.

## Euler Calculus for simple functions

> (..., Blaschke 1936, Hadwiger 1956, Rota 1971, Schapira 1988, Viro 1988, Chen 1992, ...)

The idea is to perform integration
using the Euler characteristic $\chi$ as measure.
A reasonable idea since $\chi(X \cup Y)=\chi(X)+\chi(Y)-\chi(X \cap Y)$.
But strange too since $\chi(\mathrm{pt})=1$, and $\chi($ open interval $)=-1$.

## Euler Calculus for simple functions

> (..., Blaschke 1936, Hadwiger 1956, Rota 1971, Schapira 1988, Viro 1988, Chen 1992, ...)

The idea is to perform integration
using the Euler characteristic $\chi$ as measure.
A reasonable idea since $\chi(X \cup Y)=\chi(X)+\chi(Y)-\chi(X \cap Y)$.
But strange too since $\chi(\mathrm{pt})=1$, and $\chi($ open interval $)=-1$.

The Euler integral of a "simple function" is easy to define:

$$
\int\left(\sum_{\text {finite }} a_{i} 1_{V_{i}}\right) \mathrm{d} \chi=\sum_{\text {finite }} a_{i} \chi\left(V_{i}\right) \quad a_{i} \in \mathbf{R}, \quad V_{i} \subset X
$$

(Known as a "constructible function" in algebraic geometry.)

## For simple functions, Euler integration extends to a functor

Multiplicativity $\chi(Y \times Z)=\chi(Y) \cdot \chi(Z)$ implies the Fubini theorem for simple functions:

$$
\int_{Y}\left(\int_{Z} s \mathrm{~d} \chi\right) \mathrm{d} \chi=\int_{Y \times Z} s \mathrm{~d} \chi=\int_{Z}\left(\int_{Y} s \mathrm{~d} \chi\right) \mathrm{d} \chi
$$

## For simple functions, Euler integration extends to a functor

Multiplicativity $\chi(Y \times Z)=\chi(Y) \cdot \chi(Z)$ implies the Fubini theorem for simple functions:

$$
\int_{Y}\left(\int_{Z} s \mathrm{~d} \chi\right) \mathrm{d} \chi=\int_{Y \times Z} s \mathrm{~d} \chi=\int_{Z}\left(\int_{Y} s \mathrm{~d} \chi\right) \mathrm{d} \chi
$$

More generally, it implies that integrating along the fiber of a map $f: Y \rightarrow X$ preservers the integral:

$$
\int_{Y} s \mathrm{~d} \chi=\int_{X}(\underbrace{\int_{f^{-1}(x)} s \mathrm{~d} \chi}_{f_{*}(s)}) \mathrm{d} \chi
$$

## For simple functions, Euler integration extends to a functor

Multiplicativity $\chi(Y \times Z)=\chi(Y) \cdot \chi(Z)$ implies the Fubini theorem for simple functions:

$$
\int_{Y}\left(\int_{Z} s \mathrm{~d} \chi\right) \mathrm{d} \chi=\int_{Y \times Z} s \mathrm{~d} \chi=\int_{Z}\left(\int_{Y} s \mathrm{~d} \chi\right) \mathrm{d} \chi
$$

More generally, it implies that integrating along the fiber of a map $f: Y \rightarrow X$ preservers the integral:

$$
\int_{Y} s \mathrm{~d} \chi=\int_{X}(\underbrace{\int_{f^{-1}(x)} s \mathrm{~d} \chi}_{f_{*}(s)}) \mathrm{d} \chi
$$

This pushforward $f_{*}$ is functorial $(f \circ g)_{*}=f_{*} \circ g_{*}$. If $c: X \rightarrow \mathrm{pt}$ then $c_{*}$ is Euler integration.

## Functoriality illustrated

Ex: $f: S^{2} \rightarrow[-1,1]$.


## Functoriality illustrated

Ex: $f: S^{2} \rightarrow[-1,1]$. $\begin{aligned} \text { generic fiber } \chi\left(\mathrm{S}^{1}\right) & =0 \\ \text { exceptional fiber } \chi(\mathrm{pt}) & =1\end{aligned}$

$2=\chi\left(\mathrm{S}^{2}\right)=\int 1_{\mathrm{S}^{2}} \mathrm{~d} \chi=\int f_{*}\left(1_{\mathrm{S}^{2}}\right) \mathrm{d} \chi=\int\left(1_{\{1\}}+1_{\{-1\}}\right) \mathrm{d} \chi=2$

## Functoriality in algebraic geometry

Riemann-Hurwitz formula: Applied to a ramified cover of Riemann surfaces $f: X \rightarrow Y$, functoriality gives:

$$
\chi(X)=\operatorname{deg}(f) \cdot \chi(Y)-\sum_{x \in X}\left(e_{\chi}-1\right)
$$

where $e_{\chi}$ is the ramification index of $\chi$.

## Functoriality in algebraic geometry

Riemann-Hurwitz formula: Applied to a ramified cover of Riemann surfaces $f: X \rightarrow Y$, functoriality gives:

$$
\chi(X)=\operatorname{deg}(f) \cdot \chi(Y)-\sum_{x \in X}\left(e_{\chi}-1\right)
$$

where $e_{\chi}$ is the ramification index of $\chi$.
The higher direct image (Grothendieck 1952) Rf! lifts the pushforward $f_{*}$ to sheaves: the Euler characteristics of the stalks of a sheaf $\mathcal{F} \in \mathrm{D}^{\mathrm{b}}(X)$ determine a simple function $\chi(\mathcal{F})$ and:

$$
f_{*}(\chi(\mathcal{F}))=\chi\left(\mathrm{R} f_{!}(\mathcal{F})\right)
$$

## Functoriality in algebraic geometry

Riemann-Hurwitz formula: Applied to a ramified cover of Riemann surfaces $f: X \rightarrow Y$, functoriality gives:

$$
\chi(X)=\operatorname{deg}(f) \cdot \chi(Y)-\sum_{x \in X}\left(e_{\chi}-1\right)
$$

where $e_{\chi}$ is the ramification index of $\chi$.
The higher direct image (Grothendieck 1952) Rf! lifts the pushforward $f_{*}$ to sheaves: the Euler characteristics of the stalks of a sheaf $\mathcal{F} \in \mathrm{D}^{\mathrm{b}}(X)$ determine a simple function $\chi(\mathcal{F})$ and:

$$
f_{*}(\chi(\mathcal{F}))=\chi\left(\mathrm{R} f_{!}(\mathcal{F})\right)
$$

Grothendieck-Deligne-MacPherson formalized Chern classes for singular varieties as a natural transformation $\mathrm{E} \rightarrow \mathrm{H}_{*}(-, \mathbf{Z})$. Functoriality lets one compare with smooth resolutions.

## Functoriality is useful for data analysis

Functoriality enables tomographic-type information extraction from projections of high-dimensional datasets.

## Functoriality is useful for data analysis

Functoriality enables tomographic-type information extraction from projections of high-dimensional datasets.

Baryshnikov-Ghrist 2009: Compute the total number of observable targets (eg persons, vehicles, landmarks) in a region using local counts performed by a network of sensors, each of which measures the number of targets nearby but neither their identities nor any positional information:

$$
\#\{\text { targets }\}=\int \text { (local counts) } \mathrm{d} \chi
$$

## Functoriality is useful for data analysis

Functoriality enables tomographic-type information extraction from projections of high-dimensional datasets.

Baryshnikov-Ghrist 2009: Compute the total number of observable targets (eg persons, vehicles, landmarks) in a region using local counts performed by a network of sensors, each of which measures the number of targets nearby but neither their identities nor any positional information:

$$
\#\{\text { targets }\}=\int \text { (local counts) } \mathrm{d} \chi
$$

Proof: Consider targets as tubes in spacetime. A tube has $\chi=1$ so:

$$
\#\{\text { targets }\}=\int 1_{\text {tubes }} \mathrm{d} \chi=\int f_{*}\left(1_{\text {tubes }}\right) \mathrm{d} \chi=\int \text { (local counts) } \mathrm{d} \chi
$$

where $f:$ spacetime $\rightarrow$ space is the projection.

## What about non-simple integrands?

Lebesgue integral is determined by its values on simple functions. Eg, if a sequence of simple functions converges uniformly:

$$
s_{n} \rightarrow f \quad \text { then } \quad \lim \int s_{n} \mathrm{~d} \mu=\int f \mathrm{~d} \mu
$$

## What about non-simple integrands?

Lebesgue integral is determined by its values on simple functions. Eg, if a sequence of simple functions converges uniformly:

$$
s_{n} \rightarrow f \quad \text { then } \quad \lim \int s_{n} \mathrm{~d} \mu=\int f \mathrm{~d} \mu
$$

Not so for $\chi$ since $\chi$ is only finitely and not countably additive so doesn't fit into the framework of measure theory.

## What about non-simple integrands?

Lebesgue integral is determined by its values on simple functions. Eg, if a sequence of simple functions converges uniformly:

$$
s_{n} \rightarrow f \quad \text { then } \quad \lim \int s_{n} \mathrm{~d} \mu=\int f \mathrm{~d} \mu
$$

Not so for $\chi$ since $\chi$ is only finitely and not countably additive so doesn't fit into the framework of measure theory.

As a result:
$\lim s_{n}=\lim s_{n}^{\prime}$ doesn't necessarily imply that $\lim \int s_{n} \mathrm{~d} \chi=\lim \int s_{n}^{\prime} \mathrm{d} \chi$
even if convergence is uniform.

## The 2010 work of Baryshnikov \& Ghrist

Baryshnikov-Ghrist studied this failure of convergence.
They considered the Euler integrals of two sequences of simple functions converging to a given continuous function $\alpha$ :

$$
\int \alpha\lfloor\mathrm{d} \chi\rfloor=\lim _{n \rightarrow \infty} \frac{1}{n} \int\lfloor n \alpha\rfloor \mathrm{d} \chi \quad \int \alpha\lceil\mathrm{~d} \chi\rceil=\lim _{n \rightarrow \infty} \frac{1}{n} \int\lceil n \alpha\rceil \mathrm{d} \chi
$$

## The 2010 work of Baryshnikov \& Ghrist

Baryshnikov-Ghrist studied this failure of convergence.
They considered the Euler integrals of two sequences of simple functions converging to a given continuous function $\alpha$ :

$$
\int \alpha\lfloor\mathrm{d} \chi\rfloor=\lim _{n \rightarrow \infty} \frac{1}{n} \int\lfloor n \alpha\rfloor \mathrm{d} \chi \quad \int \alpha\lceil\mathrm{~d} \chi\rceil=\lim _{n \rightarrow \infty} \frac{1}{n} \int\lceil n \alpha\rceil \mathrm{d} \chi
$$

## Ex:


$\int \operatorname{id}_{[0,1]}\lfloor\mathrm{d} \chi\rfloor=1$

$\int \operatorname{id}_{[0,1]}\lceil\mathrm{d} \chi\rceil=0$

## The 2010 work of Baryshnikov \& Ghrist

More generally:
Lemma (Baryshnikov-Ghrist): If $\alpha: \Delta^{i} \rightarrow \mathbf{R}$ is affine then:

$$
\int_{\operatorname{int}(\Delta)} \alpha\lfloor\mathrm{d} \chi\rfloor=(-1)^{i} \inf \alpha \quad \int_{\operatorname{int}(\Delta)} \alpha\lceil\mathrm{d} \chi\rceil=(-1)^{i} \sup \alpha
$$

## The 2010 work of Baryshnikov \& Ghrist

More generally:
Lemma (Baryshnikov-Ghrist): If $\alpha: \Delta^{i} \rightarrow \mathbf{R}$ is affine then:

$$
\int_{\operatorname{int}(\Delta)} \alpha\lfloor\mathrm{d} \chi\rfloor=(-1)^{i} \inf \alpha \quad \int_{\operatorname{int}(\Delta)} \alpha\lceil\mathrm{d} \chi\rceil=(-1)^{i} \sup \alpha
$$

Since inf and sup are not additive, neither of these integrals is.

## Basic Question:

Can Euler integration be extended to continuous integrands in a way which is additive?

## Basic Question:

Can Euler integration be extended to continuous integrands in a way which is additive?

Ex: How to integrate $\operatorname{id}_{[0,1]}$ ?

For a fresh perspective on the problem, consider it within the SIMPLICIAL context.

## For a fresh perspective on the problem,

 consider it within the SIMPLICIAL context.So for the time being:

- A space is a simplicial complex $X$.
- A simple function on $X$ is an R -linear combination of (the characteristic functions of) its simplices.
- A continuous function on $X$ is a simplicial map $\alpha: X \rightarrow \mathbf{R}$ i.e. a function defined by assigning a real number to each vertex and extending linearly to the interior of each simplex.

In this context there is a unique simple function which best approximates a given continuous function $\alpha: X \rightarrow \mathbf{R}$, namely:

$$
\sum_{\Delta \in X} \alpha(\hat{\Delta}) \cdot 1_{\operatorname{int}(\Delta)}
$$

where $\hat{\Delta}$ is the barycenter of $\Delta$.

In this context there is a unique simple function which best approximates a given continuous function $\alpha: X \rightarrow \mathbf{R}$, namely:

$$
\sum_{\Delta \in X} \alpha(\hat{\Delta}) \cdot 1_{\operatorname{int}(\Delta)}
$$

where $\hat{\Delta}$ is the barycenter of $\Delta$.
Ex: Regarding $\mathrm{id}_{[0,1]}$ as a simplicial map $\Delta^{1} \rightarrow \mathbf{R}$ :


In this context there is a unique simple function which best approximates a given continuous function $\alpha: X \rightarrow \mathbf{R}$, namely:

$$
\sum_{\Delta \in X} \alpha(\hat{\Delta}) \cdot 1_{\operatorname{int}(\Delta)}
$$

where $\hat{\Delta}$ is the barycenter of $\Delta$.
Ex: Regarding $\operatorname{id}_{[0,1]}$ as a simplicial map $\Delta^{1} \rightarrow \mathrm{R}$ :


In this context there is a unique simple function which best approximates a given continuous function $\alpha: X \rightarrow \mathbf{R}$, namely:

$$
\sum_{\Delta \in X} \alpha(\hat{\Delta}) \cdot 1_{\operatorname{int}(\Delta)}
$$

where $\hat{\Delta}$ is the barycenter of $\Delta$.
Ex: Regarding $\mathrm{id}_{[0,1]}$ as a simplicial map $\Delta^{1} \rightarrow \mathbf{R}$ :


Since $\chi\left(\operatorname{int}(\Delta)^{i}\right)=(-1)^{i}$ this approximation has Euler integral:

$$
\sum_{\Delta^{i} \in X}(-1)^{i} \alpha(\hat{\Delta})
$$

Since $\chi\left(\operatorname{int}(\Delta)^{i}\right)=(-1)^{i}$ this approximation has Euler integral:

$$
\sum_{\Delta^{i} \in X}(-1)^{i} \alpha(\hat{\Delta})
$$

Tentative Definition
For $X$ and $\alpha: X \rightarrow \mathbf{R}$ simplicial let:

$$
\int_{X} \alpha \mathrm{~d} \chi=\sum_{\Delta^{i} \in X}(-1)^{i} \alpha(\hat{\Delta})
$$

where the sum runs over each simplex $\Delta$ of $X$.

At the very least this integral is additive!

## Exploration of the tentative definition's properties

It is not invariant under subdivision.

## Ex:


$\int \alpha \mathrm{d} \chi=\alpha(\hat{\Delta})=\frac{1}{3} \sum \alpha\left(v_{i}\right)$

## Exploration of the tentative definition's properties

It is not invariant under subdivision.

Ex:

$\int \alpha \mathrm{d} \chi=\alpha(\hat{\Delta})=\frac{1}{3} \sum \alpha\left(v_{i}\right)$

$$
\int \alpha \mathrm{d} \chi=\frac{1}{6} \alpha\left(v_{0}\right)+\left(\frac{1}{3}+\frac{1}{6} \lambda\right) \alpha\left(v_{1}\right)+\left(\frac{1}{2}-\frac{1}{6} \lambda\right) \alpha\left(v_{2}\right)
$$

These integrals differ for any $0 \leq \lambda \leq 1$.

## Exploration of the tentative definition's properties, cont'd

But if one carries out a full barycentric subdivision then, after considerable calculation, one recovers the original integral.


$$
\int_{\Delta^{(1)}} \alpha^{(1)} \mathrm{d} \chi=\alpha(\hat{\Delta})=\int_{\Delta} \alpha \mathrm{d} \chi
$$

## Exploration of the tentative definition's properties, cont'd

But if one carries out a full barycentric subdivision then, after considerable calculation, one recovers the original integral.


Theorem: For any $n \geq 1$ :

$$
\int_{X} \alpha \mathrm{~d} \chi=\int_{X^{(n)}} \alpha^{(n)} \mathrm{d} \chi
$$

where $\alpha^{(n)}: X^{(n)} \rightarrow \mathbf{R}^{(n)}$ is the linear extension of $\alpha$ to the $n$th barycentric subdivision $X^{(n)}$ of $X$.
(This result appears in retrospect to have been a distraction though.)

## Rewriting the sum

The tentative definition may be rewritten:

$$
\begin{aligned}
\int_{X} \alpha \mathrm{~d} \chi & =\sum_{\Delta^{i} \in X}(-1)^{i} \alpha(\hat{\Delta}) \\
& =\sum_{v} \alpha(v) \mathrm{w}(v)
\end{aligned}
$$

where $v$ ranges over each vertex of $X$ and where:

$$
\mathrm{w}(v)=\sum_{i}(-1)^{i} \frac{1}{i+1} \#\{i \text {-simplices containing } v\}
$$

## Rewriting the sum

The tentative definition may be rewritten:

$$
\begin{aligned}
\int_{X} \alpha \mathrm{~d} \chi & =\sum_{\Delta^{i} \in X}(-1)^{i} \alpha(\hat{\Delta}) \\
& =\sum_{v} \alpha(v) \mathrm{w}(v)
\end{aligned}
$$

where $v$ ranges over each vertex of $X$ and where:

$$
\mathrm{w}(v)=\sum_{i}(-1)^{i} \frac{1}{i+1} \#\{i \text {-simplices containing } v\}
$$

This number has a geometric interpretation!

## Banchoff's 1967 work on curvature of embedded polyhedra

Let $X$ be a simplicial complex embedded in $\mathbf{R}^{n}$.
Def (Banchoff): The curvature at a vertex $v$ of $X$ is:

$$
\kappa(v)=\sum_{\Delta^{i} \in X}(-1)^{i} \mathcal{E}\left(\Delta^{i}, v\right)
$$

where the excess angle $\mathcal{E}\left(\Delta^{i}, v\right)$ at $v$ of a simplex $\Delta^{i} \subset \mathbf{R}^{i}$ is:

$$
\mathcal{E}\left(\Delta^{i}, v\right)=\frac{1}{\operatorname{vol}\left(\mathrm{~S}^{i-1}\right)} \int_{\mathrm{S}^{i-1}}\left[\langle\xi, v\rangle \geq\langle\xi, x\rangle \text { for all } x \text { in } \Delta^{i}\right] \mathrm{d} \xi
$$

where $\xi$ ranges over the unit sphere $S^{i-1} \subset \mathbf{R}^{i}$, and $[P]= \begin{cases}1 & \text { if } P \\ 0 & \text { if } \neg P\end{cases}$ is the Iverson bracket.

## Geometric interpretation of $\mathrm{w}(v)$

Def: Given a simplicial complex $X$, let $\mathrm{d}_{X}$ be the intrinsic metric which makes each simplex flat and gives each 1 -simplex length 1 .

## Geometric interpretation of $\mathrm{w}(v)$

Def: Given a simplicial complex $X$, let $\mathrm{d}_{X}$ be the intrinsic metric which makes each simplex flat and gives each 1-simplex length 1.

Theorem: $\mathrm{w}(v)=\kappa(v)$ if one gives $X$ the metric $\mathrm{d}_{X}$.

## Geometric interpretation of $\mathrm{w}(v)$

Def: Given a simplicial complex $X$, let $\mathrm{d}_{X}$ be the intrinsic metric which makes each simplex flat and gives each 1-simplex length 1.

Theorem: $\mathrm{w}(v)=\kappa(v)$ if one gives $X$ the metric $\mathrm{d}_{X}$.
Ex: This explains why the integral isn't invariant under subdivision:


Should have integrated like this
but integrated like this instead.

## Improved definition of integral

So the integral we're after depends on the metric structure of the domain-not just its topology.

## Improved definition of integral

So the integral we're after depends on the metric structure of the domain-not just its topology.

Corrected Definition: For a metric simplicial complex $X$ and a simplicial map $\alpha: X \rightarrow \mathbf{R}$, let:

$$
\int_{X} \alpha \mathrm{~d} \chi=\sum_{v} \alpha(v) \kappa(v)
$$

## Improved definition of integral

So the integral we're after depends on the metric structure of the domain-not just its topology.

Corrected Definition: For a metric simplicial complex $X$ and a simplicial map $\alpha: X \rightarrow \mathbf{R}$, let:

$$
\int_{X} \alpha \mathrm{~d} \chi=\sum_{v} \alpha(v) \kappa(v)
$$

i.e. Euler integration is integration with respect to curvature.

This makes a lot of sense actually...

## Generalized Gauss-Bonnet theorem (1945)

## Generalized Gauss-Bonnet Theorem:

For a compact Riemannian manifold $M$ :

$$
\int_{M} \operatorname{Pf}(\Omega)=\chi(M)
$$

That is, curvature is infinitesimal Euler characteristic.

## Generalized Gauss-Bonnet theorem (1945)

Generalized Gauss-Bonnet Theorem:
For a compact Riemannian manifold $M$ with boundary $\partial M$ :

$$
\int_{M} \operatorname{Pf}(\Omega)-\int_{\partial M} \nu^{*} \Phi=\chi(M)
$$

That is, curvature is infinitesimal Euler characteristic.

## Generalized Gauss-Bonnet theorem (1945)

Generalized Gauss-Bonnet Theorem:
For a compact Riemannian manifold $M$ with boundary $\partial M$ :

$$
\int_{M} \operatorname{Pf}(\Omega)-\int_{\partial M} \nu^{*} \Phi=\chi(M)
$$

That is, curvature is infinitesimal Euler characteristic.

Simplicial Generalized Gauss-Bonnet Theorem (Banchoff):

$$
\sum_{v} \kappa(v)=\chi(X)
$$

(Banchoff's work applies to singular simplicial complexes.)

## The importance of the boundary contribution

The Generalized Gauss-Bonnet only applies to compact spaces, so one should only integrate curvature over compact domains.

## The importance of the boundary contribution

The Generalized Gauss-Bonnet only applies to compact spaces, so one should only integrate curvature over compact domains.

Ex: An open interval $X=(0,1)$ has curvature 0 yet has $\chi(X)=-1$. But if we write:

$$
\int 1_{(0,1)} \mathrm{d} \chi=\int\left(1_{[0,1]}-1_{\{0\}}-1_{\{1\}}\right) \mathrm{d} \chi
$$

then we can use curvature integration to correctly compute:

$$
=(1 / 2+1 / 2)-1-1=-1
$$

Curvature is as general as Euler characteristic -i.e. it can be defined within any "O-minimal theory".

## Bröcker-Kuppe's 2000 work on curvature of stratified spaces

Bröcker-Kuppe used Goresky-MacPherson's work on stratified Morse theory to define curvature for any "tamely" stratified space.
(This includes all spaces in an O-minimal theory.)

## Bröcker-Kuppe's 2000 work on curvature of stratified spaces

Bröcker-Kuppe used Goresky-MacPherson's work on stratified Morse theory to define curvature for any "tamely" stratified space.
(This includes all spaces in an O-minimal theory.)

## Stratified Morse theory

Loosely speaking, a Morse function $f: Y \rightarrow \mathbf{R}$ on a stratified space $Y \subset \mathbf{R}^{N}$ is one which restricts to a classical Morse function on each stratum.

## Bröcker-Kuppe's 2000 work on curvature of stratified spaces

Bröcker-Kuppe used Goresky-MacPherson's work on stratified Morse theory to define curvature for any "tamely" stratified space.
(This includes all spaces in an O-minimal theory.)

## Stratified Morse theory

Loosely speaking, a Morse function $f: Y \rightarrow \mathbf{R}$ on a stratified space $Y \subset \mathbf{R}^{N}$ is one which restricts to a classical Morse function on each stratum.

Definition (Goresky-MacPherson): The local Morse data at a critical point $y$ of $f$ is the pair:

$$
(P, Q)=\mathrm{B}(y, \delta) \cap\left(f^{-1}[f(y)-\epsilon, f(y)+\epsilon], f^{-1}[f(y)-\epsilon]\right)
$$

where $\mathrm{B}(y, \delta)$ is a closed ball of radius $\delta$ centered at $y$.

## Bröcker-Kuppe's 2000 work on curvature of stratified spaces

Bröcker-Kuppe used Goresky-MacPherson's work on stratified Morse theory to define curvature for any "tamely" stratified space.
(This includes all spaces in an O-minimal theory.)

## Stratified Morse theory

Loosely speaking, a Morse function $f: Y \rightarrow \mathbf{R}$ on a stratified space $Y \subset \mathbf{R}^{N}$ is one which restricts to a classical Morse function on each stratum.

Definition (Goresky-MacPherson): The local Morse data at a critical point $y$ of $f$ is the pair:

$$
(P, Q)=\mathrm{B}(y, \delta) \cap\left(f^{-1}[f(y)-\epsilon, f(y)+\epsilon], f^{-1}[f(y)-\epsilon]\right)
$$

where $\mathrm{B}(y, \delta)$ is a closed ball of radius $\delta$ centered at $y$.
Remark: $P$ is always a cone so $\chi(P, Q)=\chi(P)-\chi(Q)=1-\chi(Q)$. This number is called the index of $f$ at $y$ and denoted $\alpha(f, y)$.

## Bröcker-Kuppe's 2000 work on curvature of stratified spaces

If $Y$ is compact then:

$$
\chi(Y)=\sum_{y \in Y} \alpha(f, y)
$$

Definition (Bröcker-Kuppe): The curvature measure $\kappa_{X}(U)$ of a Borel set $U \subset X$ is:

$$
\kappa_{X}(U)=\frac{1}{\operatorname{vol}\left(S^{N-1}\right)} \int_{S^{N-1}} \sum_{y \in U} \alpha\left(f_{x}, y\right) \mathrm{d} x
$$

where $f_{x}(y)=\langle x, y\rangle$ and $\chi$ ranges over the unit sphere $S^{N-1} \subset \mathbf{R}^{N}$.

## Bröcker-Kuppe's 2000 work on curvature of stratified spaces

If $Y$ is compact then:

$$
\chi(Y)=\sum_{y \in Y} \alpha(f, y)
$$

Definition (Bröcker-Kuppe): The curvature measure $\kappa_{X}(U)$ of a Borel set $U \subset X$ is:

$$
\kappa_{X}(U)=\frac{1}{\operatorname{vol}\left(S^{N-1}\right)} \int_{S^{N-1}} \sum_{y \in U} \alpha\left(f_{x}, y\right) \mathrm{d} x
$$

where $f_{x}(y)=\langle x, y\rangle$ and $x$ ranges over the unit sphere $S^{N-1} \subset \mathbf{R}^{N}$.
Remark (Bröcker-Kuppe): If $X$ is "tamely stratified" then $f_{\chi}$ is a stratified Morse function for $\mathrm{dS}^{N-1}$ almost all $\chi$.

## Bröcker-Kuppe's 2000 work on curvature of stratified spaces

If $Y$ is compact then:

$$
\chi(Y)=\sum_{y \in Y} \alpha(f, y)
$$

Definition (Bröcker-Kuppe): The curvature measure $\kappa_{X}(U)$ of a Borel set $U \subset X$ is:

$$
\kappa_{X}(U)=\frac{1}{\operatorname{vol}\left(S^{N-1}\right)} \int_{S^{N-1}} \sum_{y \in U} \alpha\left(f_{x}, y\right) \mathrm{d} x
$$

where $f_{x}(y)=\langle x, y\rangle$ and $x$ ranges over the unit sphere $S^{N-1} \subset \mathbf{R}^{N}$.
Remark (Bröcker-Kuppe): If $X$ is "tamely stratified" then $f_{\chi}$ is a stratified Morse function for $\mathrm{dS}^{N-1}$ almost all $\chi$.

Remark: If $X$ is a simplicial complex then the curvature measure is concentrated at the vertices, where it agrees with Banchoff's $\kappa(v)$.

Example from Bröcker \& Kuppe’s 2000 paper


Example from Bröcker \& Kuppe’s 2000 paper


## General Definition

Stratified Gauss-Bonnet Theorem (Bröcker-Kuppe):
If $Y$ is compact then $\chi(Y)=\kappa_{Y}(Y)$, that is:

$$
\int 1_{Y} \mathrm{~d} \chi=\int 1_{Y} \mathrm{~d} \kappa_{Y}
$$

## General Definition

Stratified Gauss-Bonnet Theorem (Bröcker-Kuppe):
If $Y$ is compact then $\chi(Y)=\kappa_{Y}(Y)$, that is:

$$
\int 1_{Y} \mathrm{~d} \chi=\int 1_{Y} \mathrm{~d} \kappa_{Y}
$$

So we reach:
Generalized Definition: For a compact tamely stratified space $Y \subset \mathbf{R}^{N}$ and a continuous function $\alpha: Y \rightarrow \mathbf{R}$, let:

$$
\int_{Y} \alpha \mathrm{~d} \chi=\int_{Y} \alpha \mathrm{~d} \kappa_{Y}
$$

where the right hand side is Lebesgue integration with respect to the Bröcker-Kuppe curvature measure $\kappa_{Y}$.

## General Definition

Stratified Gauss-Bonnet Theorem (Bröcker-Kuppe):
If $Y$ is compact then $\chi(Y)=\kappa_{Y}(Y)$, that is:

$$
\int 1_{Y} \mathrm{~d} \chi=\int 1_{Y} \mathrm{~d} \kappa_{Y}
$$

So we reach:
Generalized Definition: For a compact tamely stratified space $Y \subset \mathbf{R}^{N}$ and a continuous function $\alpha: Y \rightarrow \mathbf{R}$, let:

$$
\int_{Y} \alpha \mathrm{~d} \chi=\int_{Y} \alpha \mathrm{~d} \kappa_{Y}
$$

where the right hand side is Lebesgue integration with respect to the Bröcker-Kuppe curvature measure $\kappa_{Y}$.
More generally, given continuous functions $\alpha_{i}: Z_{i} \rightarrow \mathbf{R}$ on compact tamely stratified subspaces $Z_{i} \subset Y \subset \mathbf{R}^{N}$, let:

$$
\int_{Y} \sum_{\text {finite }} \alpha_{i} \mathrm{~d} \chi=\sum_{\text {finite }} \int_{Z_{i}} \alpha_{i} \mathrm{~d} \kappa_{Z_{i}}
$$

## Fubini Theorem

Since:

$$
\kappa_{Y \times Z}=\kappa_{Y} \times \kappa_{Z}
$$

the Fubini Theorem holds:

$$
\int_{Y}\left(\int_{Z} \alpha \mathrm{~d} \kappa_{Z}\right) \mathrm{d} \kappa_{Y}=\int_{Y \times Z} \alpha \mathrm{~d} \kappa_{Y \times Z}=\int_{Z}\left(\int_{Y} \alpha \mathrm{~d} \kappa_{Y}\right) \mathrm{d} \kappa_{Z}
$$

## Basic Question:

Does curvature integration extend to a functor?

Ex: Revisiting the projection $S^{2} \rightarrow[-1,1]$


Ex: Revisiting the projection $S^{2} \rightarrow[-1,1]$


## Ex: Revisiting the projection $S^{2} \rightarrow[-1,1]$



So although the classical pushforward depends only on the intrinsic geometry of the fibers, the curvature pushforward depends also on the extrinsic geometry of the fibers!

## Karcher's formulation (1999) of the O'Neill formulas (1966)

A Riemannian submersion $f: M \rightarrow N$ splits TM into vertical and horizontal components:

$$
\mathrm{TM} \cong \mathrm{VM} \oplus \mathrm{HM}
$$

Let $\mathcal{H}: \mathrm{TM} \rightarrow \mathrm{TM}$ be the orthogonal projection onto HM .

## Karcher's formulation (1999) of the O'Neill formulas (1966)

A Riemannian submersion $f: M \rightarrow N$ splits TM into vertical and horizontal components:

## $\mathrm{TM} \cong \mathrm{VM} \oplus \mathrm{HM}$

Let $\mathcal{H}: \mathrm{TM} \rightarrow \mathrm{TM}$ be the orthogonal projection onto HM .
Karcher's Formulas
If $V$ is vertical and $H$ horizontal then for any $X, Y$ :

$$
\begin{aligned}
& R(X, Y) V=-\overbrace{R(X, Y) \mathcal{H} \cdot V}^{\text {in } \mathrm{HM}}+\overbrace{R^{\mathrm{V}}(X, Y) V-\left[\nabla_{X} \mathcal{H}, \nabla_{Y} \mathcal{H}\right] V}^{\text {in VM }} \\
& R(X, Y) H=\underbrace{R(X, Y) \mathcal{H} \cdot H}_{\text {in } \mathrm{VM}}+\underbrace{R^{\mathrm{H}}(X, Y) H-\left[\nabla_{X} \mathcal{H}, \nabla_{Y} \mathcal{H}\right] H}_{\text {in } \mathrm{HM}}
\end{aligned}
$$

where $R^{\mathrm{H}}, R^{\mathrm{V}}$ are the curvatures of the induced connections on $\mathrm{HM}, \mathrm{VM}$.
Note: If $X, Y$ are vertical then the second part of the second equation is the Gauss equation of the fibers.

## The Pfaffian

The Generalized Gauss-Bonnet integrand is a certain multiple of the Pfaffian of the skew-symmetric matrix of 2-forms:

$$
\left[\begin{array}{c|c}
g\left(R(X, Y) V_{i}, V_{j}\right) & g\left(R(X, Y) H_{i}, V_{j}\right) \\
\hline g\left(R(X, Y) V_{i}, H_{j}\right) & g\left(R(X, Y) H_{i}, H_{j}\right)
\end{array}\right] \mathrm{d} X \mathrm{~d} Y
$$

where $V_{1}, \ldots, V_{k}, H_{k+1}, \ldots, H_{n}$ is a basis for TM consisting of vertical and horizontal vectors.

## The Pfaffian

The Generalized Gauss-Bonnet integrand is a certain multiple of the Pfaffian of the skew-symmetric matrix of 2-forms:

$$
\left[\begin{array}{c|c}
g\left(R(X, Y) V_{i}, V_{j}\right) & g\left(R(X, Y) H_{i}, V_{j}\right) \\
\hline g\left(R(X, Y) V_{i}, H_{j}\right) & g\left(R(X, Y) H_{i}, H_{j}\right)
\end{array}\right] \mathrm{d} X \mathrm{~d} Y
$$

where $V_{1}, \ldots, V_{k}, H_{k+1}, \ldots, H_{n}$ is a basis for TM consisting of vertical and horizontal vectors.

Karcher's formula lets us write:

$$
\left[\begin{array}{c|c}
g\left(\left(R^{\mathrm{V}}(X, Y)-\left[\nabla_{X} \mathcal{H}, \nabla_{Y} \mathcal{H}\right]\right) V_{i}, V_{j}\right) & -g\left(R(X, Y) \mathcal{H} \cdot H_{i}, V_{j}\right) \\
\hline g\left(R(X, Y) \mathcal{H} \cdot V_{i}, H_{j}\right) & g\left(\left(R^{\mathrm{H}}(X, Y)-\left[\nabla_{X} \mathcal{H}, \nabla_{Y} \mathcal{H}\right]\right) H_{i}, H_{j}\right)
\end{array}\right]
$$

## The Pfaffian

The Generalized Gauss-Bonnet integrand is a certain multiple of the Pfaffian of the skew-symmetric matrix of 2-forms:

$$
\left[\begin{array}{c|c}
g\left(R(X, Y) V_{i}, V_{j}\right) & g\left(R(X, Y) H_{i}, V_{j}\right) \\
\hline g\left(R(X, Y) V_{i}, H_{j}\right) & g\left(R(X, Y) H_{i}, H_{j}\right)
\end{array}\right] \mathrm{d} X \mathrm{~d} Y
$$

where $V_{1}, \ldots, V_{k}, H_{k+1}, \ldots, H_{n}$ is a basis for TM consisting of vertical and horizontal vectors.

Karcher's formula lets us write:

$$
\left[\begin{array}{c|c}
g\left(\left(R^{\mathrm{V}}(X, Y)-\left[\nabla_{X} \mathcal{H}, \nabla_{Y} \mathcal{H}\right]\right) V_{i}, V_{j}\right) & -g\left(R(X, Y) \mathcal{H} \cdot H_{i}, V_{j}\right) \\
\hline g\left(R(X, Y) \mathcal{H} \cdot V_{i}, H_{j}\right) & g\left(\left(R^{\mathrm{H}}(X, Y)-\left[\nabla_{X} \mathcal{H}, \nabla_{Y} \mathcal{H}\right]\right) H_{i}, H_{j}\right)
\end{array}\right]
$$

If the fibers are totally geodesic then $\nabla \mathcal{H}=0$ and it reduces to:

$$
\left[\begin{array}{c|c}
g\left(\left(R^{\mathrm{V}}(X, Y) V_{i}, V_{j}\right)\right. & 0 \\
\hline 0 & g\left(\left(R^{\mathrm{H}}(X, Y) H_{i}, H_{j}\right)\right.
\end{array}\right] \mathrm{d} X \mathrm{~d} Y
$$

so in this case the curvature splits $\operatorname{Pf}\left(\Omega_{M}\right)=\operatorname{Pf}\left(\Omega_{N}\right) \wedge \operatorname{Pf}\left(\Omega_{F}\right)$ and $f_{*}\left(\kappa_{M}\right)=\chi(F) \cdot \kappa_{N}$.

## Classical pushforward as limit of curvature pushforward



Classical pushforward as limit of curvature pushforward


Shrinking the fiber ("Berger Deformation"): $g_{\epsilon}=g^{\mathrm{V}}+\epsilon \cdot g^{\mathrm{H}}$.

Classical pushforward as limit of curvature pushforward


Shrinking the fiber ("Berger Deformation"): $g_{\epsilon}=g^{\mathrm{V}}+\epsilon \cdot g^{\mathrm{H}}$.
"Theorem": $f_{*}\left(\kappa_{X}^{\epsilon}\right) \rightarrow f_{*}\left(1_{X}\right) \cdot \kappa_{Y}$ as $\epsilon \rightarrow 0$.

## Summary

Interpolating between Baryshnikov-Ghrist's non-additive:

$$
\int_{X} \alpha\lfloor\mathrm{~d} \chi\rfloor \quad \int_{X} \alpha\lceil\mathrm{~d} \chi\rceil
$$

leads to an additive integral, and this integral is integration with respect to curvature:

$$
\int_{X} \alpha \mathrm{~d} \kappa_{X}
$$

This integral is as general as the Euler characteristic itself.
It extends to a functor whose pushforward reflects both the intrinsic and extrinsic geometry of fibers.

This pushforward approaches the classical pushforward as one shrinks the fibers.

## References

- Thomas Banchoff. Critical points and curvature for embedded polyhedra. J. Differential Geometry, 1:245-256, 1967, MR0225327.
- Yuliy Baryshnikov \& Robert Ghrist. Euler integration over definable functions. Proc. Natl. Acad. Sci. USA, 107(21):9525-9530, 2010, MR2653583.
- Ludwig Bröcker \& Martin Kuppe. Integral geometry of tame sets. Geom. Dedicata, 82(1-3):285-323, 2000, MR1789065.
- Shiing-shen Chern. A simple intrinsic proof of the Gauss-Bonnet formula for closed Riemannian manifolds. Ann. of Math. (2), 45:747-752, 1944, MR0011027.
- Robert MacPherson. Chern classes for singular algebraic varieties. Ann. of Math. (2), 100:423-432, 1974, MR0361141.
- Hermann Karcher. Submersions via projections. Geom. Dedicata, 74(3):249-260, 1990, MR1669359.

