Topology — the mathematics of spaces

Classical Question: Can \mathbb{C}^n be deformed into \mathbb{C}? Answer: No. But how are we sure?

Because the "Euler Characteristic $X"$ detects:

$$X(\mathbb{C}^n) = 2 \neq 0 = X(\mathbb{C})$$

In fact, X classifies all (compact, oriented) 2-dimensional surfaces:

$$X\left(\begin{array}{c}
\includegraphics{surface}\n\end{array}\right) = 2 - 2g$$

Higher-dimensional surfaces are much more difficult to classify.
I am studying the "signature" σ.

It is a "cobordism invariant". (It is not.)

This means that if two spaces M and N "cobound" a space W:

\[M \sqcup W \sqcup N \]

then $\sigma(M) = \sigma(N)$.

Your pair of pants, for example, say that

$\sigma(\text{circle}) = \sigma(2 \text{ circles}) = 2 \cdot \sigma(\text{circle})$

imply $\sigma(\text{circle}) = 0$

Cobordism provides a stepping stone in classifying spaces: first classify "up to cobordism", then refine the classification.
This is all old news. What am I studying?
The classification of spaces with singularities.

\[\text{In particular, I am studying how to compute the signature of such spaces.} \]
\[\text{(It is surprisingly difficult and involves the "derived category of sheaf complexes".)} \]

The hope is to then use this to classify singular spaces— at least "up to cobordism."
What is the Euler Characteristic X?

It's the "alternating sum" of the number of "cells" in a space:

\[
\begin{array}{ccc}
0\text{-cells} & 1\text{-cells} & 2\text{-cells} \\
\cdot & \circ & \cdot \\
\end{array}
\]

\[+1 - 0 + 1 = 2 = X(\circ\circ)\]

\[
\begin{array}{ccc}
\cdot & \circ & \infty \\
\end{array}
\]

\[+1 - 2 + 1 = 0 = X(\circ\circ)\]