
STRATIFIED MORSE THEORY

CARL MCTAGUE

The sea was clearly visible for a one-mile radius around the Nautilus.
What a sight! What pen could describe it? Who could portray the effects
of the light through those translucent sheets of water, the subtlety of its
progressive shadings into the ocean’s upper and lower strata?

—Jules Verne, Twenty Thousand Leagues Under the Sea
(trans. F.P. Walter)

INTRODUCTION

Classical Morse Theory establishes a connection between the topology of a
smooth manifold X and the critical points of an open dense family of func-
tions f : X →R. Stratified Morse Theory generalizes Classical Morse Theory to
spaces with singularities—in particular to subspaces of smooth manifolds that
admit a Whitney stratification. (Many singular spaces, including all real and
complex analytic varieties, fall into this broad category.)

Specifically, Stratified Morse Theory generalizes three theorems at the heart
of Classical Morse Theory.

The first two classical theorems, Theorems A and B, say that the topology of
the space X≤v := {x ∈ X : f (x)≤ v} changes only when v passes through a critical
value, and that when it does the topological change can be described as at-
taching a “handle” (see p. 3). These theorems generalize elegantly to Whitney
stratified spaces (see p. 4)—although their proofs are surprisingly technical.

The third classical theorem, Theorem C, provides a homological character-
ization of the index of a critical point; it says that if v is a critical value of
index λ , then:

Hk(X≤v+ε ,X≤v−ε) =

{
Z if k = λ

0 otherwise

for sufficiently small ε > 0.
Does Theorem C generalize to Whitney stratified spaces? Not directly, as

simple examples show (see p. 5). But if we replace ordinary homology with
intersection homology and if we consider only complex analytic varieties of
pure dimension, then we obtain Theorem C’ on p. 5. Its proof is our main goal
in this essay.

The need for intersection homology in the statement of Theorem C’ is per-
haps unsurprising. After all, Theorem C plays a central role in the Morse-
theoretic proof of classical Poincaré duality, and intersection homology is a
homeomorphism invariant that recovers Poincaré duality for complex analytic
varieties of pure dimension (see p. 16).

But intersection homology recovers Poincaré duality for many more spaces
than just complex analytic ones (for example Witt spaces). Does Theorem C
generalize to these spaces as well? This is unknown, but our proof of Theo-
rem C’ makes it seem unlikely.

Indeed our proof of Theorem C’ depends heavily on the assumption that X is
complex analytic. To begin with, it relies on an analysis of the local structure
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of complex analytic varieties using the so-called Milnor fibration. Next it pro-
ceeds by induction on dimension by passing to the complex link in the normal
slice of the critical point. This inductive step uses the Lefschetz hyperplane
theorem for complex analytic varieties.

Because our proof of Theorem C’ depends so heavily on the assumption that
X is complex analytic, we simplify our exposition by restricting to complex ana-
lytic varieties from the outset, even though many of the intermediate results—
in particular the generalizations of Theorems A and B—hold for any Whitney
stratified space.

We conclude the essay by considering the special case of complex algebraic
curves.

The results in this essay are due to Goresky and MacPherson [GM83c]. The
principal references used were the book [GM88] and the article [GM83b].
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1. THEOREMS A, B, AND C OF CLASSICAL MORSE THEORY

Let X be a smooth complex analytic variety of complex dimension n. Assume
that X is analytically embedded in some ambient complex analytic manifold M.
In this way X could be virtually any sort of ‘complex variety’ you could imagine,
including an affine or projective algebraic variety.

Classical Morse Theory [Mil63] establishes a connection between the topol-
ogy of X—or more generally any smooth manifold—and the critical points of
an open dense family of proper1 functions X → R called Morse functions. In
particular, it shows that local information near the critical points of a proper
Morse function f : X → R can be used to construct X through a sequence of
surgeries. This in turn reveals a relationship between the critical points of f
and the homology of X . Theorems A, B, and C below codify these results.

First recall that a point p is called a critical point for a smooth function
f : X → R if the induced map f∗ : TpX → R is zero. The real number f (p) is
then called a critical value. We call f a Morse function if (i) its critical values
are distinct and (ii) its critical points are nondegenerate—ie its Hessian ma-
trix of second derivatives at p has nonvanishing determinant. The number of
negative eigenvalues of this Hessian matrix is called the index of f at p.

Let X≤v denote the subspace {x ∈ X : f (x) ≤ v} and let (Da,∂Da) denote the
(closed) a-dimensional disk and its boundary sphere.

1We call f proper if f−1(K) is compact whenever K is.
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The key theorems of Classical Morse Theory can now be stated as follows.

Theorem A. As v varies within the open interval between two adjacent critical
values, the topological type of X≤v does not change.

But as v crosses a critical value f (p), the topological change of X≤v can be
described as follows.

Theorem B. The space X≤ f (p)+ε is homeomorphic to the space obtained from
X≤ f (p)−ε by attaching a “handle” Dλ ×D2n−λ along ∂Dλ ×D2n−λ , where λ is the
index of f at the critical point p and ε > 0 is sufficiently small.

We can restate Theorem B by saying that the Morse Data for f at p is:

(Dλ ×D2n−λ ,∂Dλ ×D2n−λ ) .

Theorems A and B together tell us how to construct X through a sequence
of surgeries, one for each critical value.

A consequence of Theorem B is the following beautiful result.

Theorem C. If p is a critical point of index λ , then:

Hk(X≤ f (p)+ε ,X≤ f (p)−ε) =

{
Z if k = λ

0 otherwise

for sufficiently small ε > 0.

Theorem C gives a purely homological characterization of the index λ and
leads to the Morse inequalities—inequalities which constrain the number of
critical points of f by the Betti numbers of X (and vice versa).

2. THEOREMS A’, B’, AND C’ OF STRATIFIED MORSE THEORY

Now let X be a singular complex analytic variety (again analytically em-
bedded in some ambient smooth complex manifold M). Can the Morse theory
described above tell us anything about the topology of X? Not directly; since
X is not smooth, we have no notion of ‘smooth function’ on X , let alone crit-
ical points and indices. But the theory described above can nevertheless be
modified to apply to X as follows.

First of all, a theorem (see for example [Hir73]) says that X admits a Whit-
ney stratification. Loosely speaking, this means that X can be decomposed into
smooth submanifolds, called strata, such that the topology of X near each stra-
tum is locally constant.

To define a Whitney stratification formally, we first introduce the more gen-
eral notion of an I -decomposition.

Definition 2.1. Let (I ,<) be a partially ordered set. An I -decomposition of a
topological space Z is a locally finite collection of disjoint, locally closed subsets
called pieces Sα ⊂ Z (one for each α ∈I ) such that:

(1) Z =
⋃

α∈I Sα and
(2) Sα ∩Sβ 6= /0 ⇐⇒ Sα ⊂ Sβ ⇐⇒ α = β ∨ α < β

(in which case we write Sα < Sβ ).

Definition 2.2. Let Z be a closed subset of a smooth manifold M. A Whit-
ney stratification of Z is an I -decomposition Z =

⋃
α∈I Sα for some partially-

ordered set I such that:
(1) Each piece Sα is a locally closed smooth submanifold of M.
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(2) Let Sα < Sβ and y ∈ Sα . Suppose that two sequences xi ∈ Sβ and yi ∈ Sα

converge to y, that the secant lines xiyi converge to some limiting line
`, and that the tangent planes TxiSβ converge to some limiting plane τ.
Then `⊂ τ.

We call the pieces of a Whitney stratification its strata, and we assume that
each stratum is connected.

Condition (2) of Definition 2.2 is referred to as “Whitney’s Condition B”. It
implies a weaker condition called “Whitney’s Condition A” (not stated). Al-
though these important conditions are needed to prove most of the results on
which our arguments depend, our arguments themselves never directly appeal
to these conditions. Therefore, the reader should perhaps simply bear in mind
the most important and easily grasped consequence of Whitney’s conditions:
that the topology of a Whitney stratified space is locally constant over each
stratum; that is, each stratum has a neighborhood (in Z) that is a fiber bundle
with base space the stratum. (The fiber is a space we define later called the
normal slice.) For a thorough treatment of these conditions see [Mat70].

We are making progress in extending Morse theory to X , for if the point p
lies within the stratum S, we can now speak of the tangent space TpS. But if X
is singular along S, there could be many more planes “tangent” to X at p; we
call each such plane a generalized tangent space. More precisely, a generalized
tangent space at p is any plane Q of the form:

Q = lim
pi→p

TpiS
′

where pi is a sequence of points in a stratum S′ converging to p.
With these concepts in place, Lazzeri [Laz73] introduced the following gen-

eralization of Morse function.

Definition 2.3. A function f : X → R is called a Morse function if:
(1) f is the restriction of a smooth function f̃ : M→ R.
(2) The restriction f |S is Morse (in the classical sense) for each stratum S.

A point p in a stratum S is then called a critical point for f if it is a critical
point (in the classical sense) for f |S. The index of f at p is c+λ , where c is the
complex codimension of S and λ is the (classical) index of f |S. (The motivation
for this definition comes from Theorem C’ below.)

(3) All critical values are distinct.
(4) For each critical point p and for each generalized tangent space Q at p

other than TpS, df̃ (p)(Q) 6= 0.

Note that if {p} is a zero-dimensional stratum, then p must be critical.
Pignoni [Pig79] proved that if X is closed in M then the subset of proper

functions that restrict to Morse functions on X is open and dense in the set of
all proper C∞ functions M→ R and that such Morse functions are structurally
stable.

Assuming f is proper, Theorem A generalizes to this setting verbatim.

Theorem A’. As v varies within the open interval between two adjacent critical
values, the topological type of X≤v does not change.

To generalize Theorem B we need the following important construction.
Let p be a critical point contained in a stratum S. Choose an analytic man-

ifold V ⊂ M that meets S transversely in the single point p. Let Bδ (p) denote
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the closed ball of radius δ with respect to some local coordinates for M. Then
the normal slice Nδ is the intersection B◦

δ
(p)∩V ∩X .

Theorem B’. If 1� δ � ε > 0 are sufficiently small, then the Morse data at p
may be written:2

(Dλ ×Da−λ ,∂Dλ ×Da−λ︸ ︷︷ ︸
“tangential Morse data”

)× ((Nδ )≤ f (p)+ε ,(Nδ )≤ f (p)−ε︸ ︷︷ ︸
“normal Morse data”

)

where a is the real dimension of the stratum S and λ is the index of f |S.
The topological types of the normal slice and the normal Morse data are

independent of V , δ , and ε. In fact, by a miracle of complex geometry, the
topological type of the normal Morse data is also independent of f .

Theorems A’ and B’ are essential to what follows, but we do not prove them.
And for good reason: although they emerge intuitively from examples (see for
instance the (not complex analytic) “perverse donut” on pp. 6–9 of [GM88]),
their full proofs occupy about one-hundred pages of [GM88].

So, how might we generalize the beautiful Theorem C? The following exam-
ple illustrates that it will not be easy.

Example. Consider the (unreduced) suspension SY of some space Y . The pro-
jection [y, t] 7→ t is a Morse function SY → R. Its only critical points are the cone
points. If something like Theorem C were true, it would imply (by excision)
that the relative group Hk(CY,Y ) vanished in all but one dimension. But at
the same time, the long exact sequence for the pair (CY,Y ) gives isomorphisms
Hk(CY,Y ) ∼= H̃k−1Y . Thus, if Y has nonvanishing reduced homology in several
dimensions, we would arrive at a contradiction.

If we consider the complex cone over a complex algebraic variety Y embed-
ded in projective space, we see that the problem persists even if we consider
only complex analytic varieties. (In fact, for complex analytic varieties it can
be shown ([GM88], p. 211) that Hk(X≤ f (p)−ε ,X≤ f (p)+ε)∼= H̃k−λ−1(L ), where L is
the complex link associated to p—an important space which we define later.)

Fortunately Theorem C can nevertheless be generalized, but in place of sin-
gular homology we must use intersection homology. (The reader unfamiliar
with intersection homology should consult the Appendix on p. 16, where we
define intersection homology and state all its properties we need.)

We repeat the standing assumptions about X and f for emphasis.

Theorem C’. Let X be a complex analytic variety of pure dimension (an-
alytically embedded in an ambient complex analytic manifold M) and let
f : X → R be a proper Morse function (in the sense of Definition 2.3). If p is
a critical point of index i = c+λ , where c is the complex codimension of the
stratum S containing p and λ is the index of f |S, then:

IHk(X≤ f (p)+ε ,X≤ f (p)−ε) =

{
Ap for k = i
0 for k 6= i

for sufficiently small ε > 0.

2The product of pairs (A,B)× (A′,B′) denotes the pair (A×A′,A×B′ ∪ A′×B).
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The group Ap is called the Morse group of the critical point p and, in contrast
with Theorem C, is not necessarily Z. We will see that it depends only on the
stratum of X containing p—and not on f . In fact we will give a somewhat
geometric description of the group.

The first step in proving Theorem C’ is the following corollary of Theorem B’.

Corollary 2.4 (of Theorem B’). If p is a critical point of index i = c+λ , then:

IHk(X≤ f (p)+ε ,X≤ f (p)−ε)∼= IHk−λ ((Nδ )≤ f (p)+ε ,(Nδ )≤ f (p)−ε︸ ︷︷ ︸
normal Morse data

) .

Proof. Excise X< f (p)−ε from the decomposition provided by Theorem B’ and ap-
ply the Künneth Formula to the remaining pair. �

A point is always a zero-dimensional stratum of its normal slice, so Corol-
lary 2.4 reduces the proof of Theorem C’ to the case of a zero-dimensional stra-
tum {p}. Moreover, if δ is sufficiently small then we may use local coordinates
in M to regard Nδ as sitting directly in Cm.

To prove this special case we use a beautiful construction due to Milnor:
near p we factor f through a fiber bundle over a punctured disk in the complex
plane. The construction of this so-called Milnor fibration depends heavily on
the assumption that X is complex analytic. (In contrast, the proofs of Theo-
rems A’ and B’ make no use of this assumption and would in fact be true if
we replaced X by a real analytic variety, or even a closed subanalytic subset of
an analytic manifold—although in this more general setting the normal Morse
data depends on f .)

3. THE LOCAL STRUCTURE OF COMPLEX ANALYTIC VARIETIES

Let N be a Whitney stratified (not necessarily closed) complex analytic vari-
ety in Cm with a zero-dimensional stratum {p}.

Let π : Cm→ C be a linear projection such that π(p) = 0 and such that Re(π)
restricts to a Morse function on N near p. By condition (3) of Definition 2.3, this
means that dπ(p)(Q) = 0 for every generalized tangent space to N at p. The set
of such projections is open and dense in the space of all linear maps Cm → C.
(See Pignoni [Pig79]).

To proceed further we must introduce several new spaces.
First, let Nδ denote the open ball in N of radius δ about p, and Nδ its closure

(in N). (Note that this notation is consistent with the earlier meaning of these
symbols if N is a normal slice.) Let Dε ⊂ C denote the closed disk of radius ε.

Definition 3.1. Let 1� δ � ε > 0 be very small and let ξ ∈ ∂Dε . The following
definitions are illustrated schematically in Figures 1 to 4 on pp. 7–8 (modified
slightly from [GM83b]).

(1) The complex link L and its boundary:

L := π
−1(ξ )∩Nδ (p)

∂L := π
−1(ξ )∩∂Nδ (p) .

(2) The cylindrical neighborhood C of p:

C := π
−1(Dε)∩Nδ (p) .

(3) The horizontal and vertical parts of the real link:

Lh := π−1(∂Dε)∩Nδ Lv := π−1(Dε)∩∂Nδ .
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(4) The real link:

L := ∂C = Lh∪Lv .

δ
p

FIGURE 1. Nδ (p), the closed ball in the normal slice. [GM83b]

0

C

L

ε

π

ξ

FIGURE 2. C, the cylindrical neighborhood, and its image un-
der the projection π. [GM83b]

The following theorem is the key result of this section—and an indispens-
able ingredient in the proof of Theorem C’.

Theorem 3.2. (a) The restricted projection:

π : C−π
−1(0) −→ Dε −{0}

is a topological fiber bundle (called the Milnor fibration) with fiber L .
(b) (C,L) is a mapping cylinder neighborhood of {p}. More precisely,

there is a homeomorphism:

Cone(L)→C

that takes the vertex of the cone to p, takes the base of the cone to L by the
identity, and takes Cone(L<0) homeomorphically to C<0 ∪ {p}. (Here “<0”
refers to the Morse function Re(π).)
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FIGURE 3. Lh, the horizontal part of the real link. [GM83b]

FIGURE 4. Lv, the vertical part of the real link. [GM83b]

(c) There is an embedding:

r : ∂L × [0,1)×Dε →C

which takes ∂L ×{0}×Dε homeomorphically to Lh and for which:

π ◦ r : ∂L × [0,1)×Dε → Dε

is projection to the third factor.
(d) There is a homeomorphism of pairs:

((Nδ )≤ε ,(Nδ )≤−ε)∼= (C≤η ,C≤−η)

for 0 < η � ε. (Here “≤ε” etc again refer to the Morse function Re(π).)

The proof of Theorem 3.2 involves delicate arguments in stratification the-
ory using controlled vector fields (see [GM88]). We do not prove it. We encour-
age the reader to see Milnor’s delightful book [Mil68] for further information
about the Milnor fibration.

We also omit the proof of the following important technical result.

Theorem 3.3. The topological types of the spaces and maps defined in this
section—including the cylindrical neighborhood and the complex link—are in-
dependent of the projection π and the numbers δ , ε, ξ , and η . If N is the normal
slice at a point p in a stratum S, then the topological types of these spaces and
maps are also independent of N and p ∈ S.
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4. THE INTERSECTION HOMOLOGY OF THE CYLINDRICAL NEIGHBORHOOD

We need the following three corollaries of Theorem 3.2 to prove Theorem C’.

Corollary 4.1. There is an isomorphism:

IHk((Nδ )≤ f (p)+ε ,(Nδ )≤ f (p)−ε︸ ︷︷ ︸
normal Morse data

)∼= IHk(C,C<0) for all k.

Proof. Theorem 3.2(d) gives an isomorphism:

IHk((Nδ )≤ε ,(Nδ )≤−ε)∼= IHk(C≤η ,C≤−η)

for sufficiently small η > 0.
By Theorem 3.2(a) the inclusions C≤η ↪→ C and C≤−η ↪→ C<0 are isotopic

through inclusions to homeomorphisms and hence induce isomorphisms on in-
tersection homology. The Five Lemma, applied to the inclusion-induced maps
between the long exact sequences for these pairs, then yields an isomorphism:

IHk(C≤η ,C≤−η)∼= IHk(C,C<0) .

�

Corollary 4.2. There is a canonical isomorphism:

IHk(C<0)∼= IHk(L ) for all k.

Proof. By Theorem 3.2(a) the projection π restricts to C<0 as a fiber bundle
over the contractible space D<0. Therefore C<0 ∼= L ×D<0, and the Künneth
Formula gives a (canonical) isomorphism on intersection homology. �

We have saved the best for last.

Corollary 4.3. There is a canonical isomorphism:

IHk(C−{p},C<0)∼= IHk−1(L ,∂L ) for all k.

Proof. There are four steps.

Step 1. Theorem 3.2(b) gives a homeomorphism:

(C−{p},C<0)∼= (L,L<0)× [0,1) ,

so the Künneth Formula gives an isomorphism:

IHk(C−{p},C<0)∼= IHk(L,L<0) .(1)

Step 2. Consider the following diving-helmet-like subset of L (illustrated in
Figure 6 on p. 11):

Lc := L<0∪Lh∪ r(∂L × [0, 1
2 )×∂Dε)

where r is the embedding provided by Theorem 3.2(c). We show that (L,L<0) is
homeomorphic to (L,Lc).

Consider the following neighborhood U ⊂ L of Lh:

U := Lh ∪ r(∂L × [0,1)×∂Dε) .

The homeomorphism Lh ∼= ∂L ×{0}×Dε provided by Theorem 3.2(c) extends
to a homeomorphism U ∼= ∂L ×D◦3ε

sending collaring lines to radial lines in C.
Composing this homeomorphism with the homeomorphism between the open
subsets of C drawn in Figure 5 on the next page yields the desired homeomor-
phism (L,L<0)∼= (L,Lc) and thus induces an isomorphism:

IHk(L,L<0)∼= IHk(L,Lc) .(2)
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3 ε2 εε

FIGURE 5. These two open subsets of C are related by a home-
omorphism fixing a neighborhood of the circle of radius 3ε.
[GM83b]

Step 3. Now we excise all but the helmet’s visor (and its rim). To define these
subspaces formally we introduce two subsets of ∂Dε :

I := {z ∈ ∂Dε :− ε

2 < Re(z)} and
J := {z ∈ ∂Dε :− ε

2 < Re(z)< 0} .
Since I is contractible, the restriction of π to π−1(I)∩L is a trivial fiber bun-

dle. In fact, according to Theorem 3.2(c), there is a trivialization:

T : L × I
∼=−→ π

−1(I)∩L

that takes (∂L × [0,1))× I to r(∂L × [0, 1
2 )× I).

The visor (and its rim) may then be written:

(R,R′) := T ( (L ,∂L × [0,1))× (I,J) ) ⊂ (L,Lc) .

Excising the smoothly enclosed set Lc−R we obtain:

IHk(L,Lc)∼= IHk(R,R′) .(3)

Step 4. By the Künneth Formula:

IHk(R,R′)∼= IHk−1(L ,∂L × [0,1))∼= IHk−1(L ,∂L ) .(4)

Composing the isomorphisms (1)-(4), we obtain the desired isomorphism
IHk(C−{p},C<0) ∼= IHk−1(L ,∂L ). A careful analysis shows that this isomor-
phism is in fact canonical. �

5. THE VARIATION MAP

Now we introduce a homomorphism whose image is the Morse group Ap.

Definition 5.1. We call the composition:

IHk(L ,∂L )
Cor. 4.3∼= IHk+1(C−{p},C<0)

∂∗−→ IHk(C<0)
Cor. 4.2∼= IHk(L )

the variation map, and we denote it Var : IHk(L ,∂L )→ IHk(L ).

Equivalently, the variation map may be constructed geometrically as fol-
lows. Restrict π to π−1(∂Dε)∩C. This fiber bundle is classified by a monodromy
homeomorphism µ : L →L (which, together with an orientation for the base
circle ∂Dε , describes how to recover the fiber bundle from L × [0,1]→ [0,1] by
identifying (q,0) with (µ(q),1) for q ∈L ).

By Theorem 3.2(c), this monodromy homeomorphism may be chosen to be
constant in some neighborhood of ∂L . Therefore if [c] ∈ IHk(L ,∂L ) then the
chain c− µ(c) determines an element of IHk(L )—and this element is in fact
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Step 2 Step 3

(L,L<0) (L,Lc) (R,R′)

FIGURE 6. Steps 2 and 3 in the proof of Corollary 4.3. [GM83b]

Var([c]) as defined above. (The reader can convince himself of this by recalling
the geometric steps in the proofs of Corollaries 4.3 and 4.2.)

6. PROOF OF THEOREM C’

We now prove Theorem C’ by induction: to prove Theorem C’ when X has
dimension n, we apply Theorem C’ to the complex link L , which has dimension
strictly less than n. To be completely explicit, we prove the following theorem
inductively for n≥ 0.

Theorem C’n. Let X be a purely n-dimensional complex analytic variety (an-
alytically embedded in some ambient complex analytic manifold M) and let
f : X → R be a proper Morse function. Suppose p is a critical point of index
i = c+λ , where c is the complex codimension of the stratum S containing p and
λ is the index of f |S. Then:

IHk(X≤ f (p)+ε ,X≤ f (p)−ε) =

{
Ap for k = i
0 for k 6= i

for sufficiently small ε > 0.
The Morse group Ap is isomorphic to the image of the variation map:

Var : IHc−1(L ,∂L )→ IHc−1(L )

where (L ,∂L ) is the complex link (and its boundary) associated to the stratum
S containing p.

Proposition 6.1. If Theorem C’c holds for c < n, then it also holds for c = n.

Proof. Let X , M, f , p, S, i, c, and λ be as in the statement of Theorem C’n.
Let Nδ be the normal slice of X at p. Note that Nδ has pure complex dimen-

sion c (because X has pure dimension n). Corollary 2.4 says that:

IHk(X≤ f (p)+ε ,X≤ f (p)−ε)∼= IHk−λ ((Nδ )≤ f (p)+ε ,(Nδ )≤ f (p)−ε︸ ︷︷ ︸
normal Morse data

)

for sufficiently small 1� δ � ε > 0.
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If δ is small enough then we can use local coordinates in M to regard Nδ as
sitting directly in Cm. Let π : Cm → C be a linear projection whose real part
Re(π) restricts to a Morse function on Nδ . (Such projections exist by the results
of Pignoni cited earlier.)

The last part of Theorem B’ says that the normal Morse data for f and
Re(π) are homeomorphic.3 Composing the resulting isomorphism on intersec-
tion homology groups with the isomorphism provided by Corollary 4.1 gives an
isomorphism:

IHk−λ ((Nδ )≤ f (p)+ε ,(Nδ )≤ f (p)−ε︸ ︷︷ ︸
normal Morse data

)∼= IHk−λ (C,C<0) ,

where C is the cylindrical neighborhood constructed from π.

To compute the groups IHk(C,C<0) we examine the triple of spaces:

C ⊃C−{p} ⊃C<0 ,

which we denote Y ⊃ A⊃ B in the following diagrams for simplicity.
First, write the long exact sequence for this triple as a sweeping wave:

$$
IHk(A,B)

��?
??

??
??

?
IHk−1(Y,A)

!!

IHk(Y,B)

��?
??

??
??

?
IHk−1(Y,B)

??��������

IHk(Y,A) ::
IHk−1(A,B)

??��������

Superpose the long exact sequence for the pair (Y,B) = (C,C<0):

$$
IHk(A,B)

��?
??

??
??

?
IHk−1(B)

$$
IHk−1(Y )

��?
??

??
??

?
IHk−1(Y,A)

!!

IHk(Y,B)

��?
??

??
??

?

??��������
IHk−1(Y,B)

??��������

��?
??

??
??

?

::
IHk(Y )

??��������
IHk(Y,A) ::

IHk−1(A,B)

??��������
IHk−1(B) ==

Similarly superpose the long exact sequences for the pairs (Y,A) = (C,C−
{p}) and (A,B) = (C− {p},C<0) to obtain a commuting cascade of exact se-
quences:

3The homeomorphism can be made canonical by choosing a projection π with covector
d(Re(π))(p) sufficiently close to df (p).
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$$
IHk(A,B)

��?
??

??
??

?

$$
IHk−1(B)

��?
??

??
??

?

$$
IHk−1(Y )

��?
??

??
??

?

$$
IHk−1(Y,A)

��?
??

??
??

??
?

!!
??����������

��?
??

??
??

??
? IHk(Y,B)

��?
??

??
??

?

??��������
IHk−1(A)

??��������

��?
??

??
??

?
IHk−1(Y,B)

??��������

��?
??

??
??

?

::
IHk(Y )

??��������

::
IHk(Y,A)

??��������

::
IHk−1(A,B)

??��������

::
IHk−1(B)

??����������
==

We prove the proposition by examining the
_
X-shaped subdiagram of the cas-

cade centered at IHk(Y,B) = IHk(C,C<0) for each k:

IHk(C−{p},C<0)

��?
??

??
??

?

$$
IHk−1(C<0)

IHk(C,C<0)

??��������

��?
??

??
??

?

IHk(C)

??��������
IHk(C,C−{p})

Composing with the isomorphisms provided by Corollaries 4.3 and 4.2, we
obtain the exact commuting diagram:

IHk−1(L ,∂L )

��?
??

??
??

?

Var

$$
IHk−1(L )

IHk(C,C<0)

??��������

��?
??

??
??

?

IHk(C)

??��������
IHk(C,C−{p})

(∗)

Local calculation (cf the Appendix) shows that:

IHk(C) = 0 for k ≥ c and
IHk(C,C−{p}) = 0 for k ≤ c .

Therefore when k = c both groups at the base of the diagram vanish, and
exactness gives a commuting triangle:

IHk−1(L ,∂L )

surjective
��?

??
??

??
?

Var

$$
IHk−1(L )

IHk(C,C<0)

injective

??��������
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By commutativity, the injection↗ maps onto the image of Var. At the same
time this injection cannot hit anything but the image of Var, since the homo-
morphism ↘ is surjective. Therefore the injection ↗ in fact gives an isomor-
phism from the Morse group to the image of Var, as desired.

It remains to show that all other groups IHk(Y,B) = IHk(C,C<0) vanish. We
do this by showing that opposing pairs of groups in the diagram (∗) always
vanish when k 6= c. In light of the local calculation above, it suffices to prove
the following lemma.

Lemma.

IHk−1(L ) = 0 for k > c and
IHk−1(L ,∂L ) = 0 for k < c .

Proof. We apply Theorem C’dimCL to the complex link L . Recall that the nor-
mal slice Nδ has pure complex dimension c≤ n, so L has pure complex dimen-
sion c−1< n. Thus, our inductive hypothesis makes Theorem C’dimCL available.

In what follows, let L denote the complex link over a fixed ξ ∈ Dε −{0}.
For the first conclusion, choose a point p′ very close to p so that the proper

function g : Cm→ R defined by:

g(q) := ||p′−q||2

restricts to a Morse function on L . Just as in the proof of the Lefschetz hy-
perplane theorem (see [Mil63]), we conclude that if A is a stratum of L , then
the index of g|A at any critical point is at most the complex dimension of A (ie
at most half its real dimension). Theorem C’c−1 applied to g therefore implies
that for each critical value v:

IHk(L≤v+ε ′ ,L≤v−ε ′) = 0 for k > dimCA+ codCA = c−1

provided ε ′ > 0 is sufficiently small. (Here the symbols “≤v+ε ′” etc of course
refer to the Morse function g, not f .)

By induction on the critical values v, using long exact sequences of pairs at
each step, we conclude that:

IHk−1(L ) = IHk−1(L≤δ+ε ′) = IHk−1(L≤0−ε ′) = IHk−1( /0) = 0 for k > c

as desired.

The second conclusion is dual to the first. Consider the Morse function −g :
L →R. If the reader stands on his head, he will see that if A is a stratum of L ,
then the index of (−g)|A at any critical point is at least the complex dimension
of A. Theorem C’c−1 applied to−g therefore implies that for each critical value v:

IHk(L≤v+ε ′ ,L≤v−ε ′) = 0 for all k < dimCA+ codCA = c−1

provided ε ′ > 0 is sufficiently small. (Here the symbols “≤v+ε ′” etc refer to the
Morse function −g, not f or g.)

By induction on the critical values v1 < v2 < · · · < vr, using long exact se-
quences of triples at each step, we conclude that:

0 = IHk−1(L≤v1+ε ′ ,L≤v1−ε ′)

= IHk−1(L≤v2+ε ′ ,L≤v1−ε ′)

...
= IHk−1(L≤vr+ε ′ ,L≤v1−ε ′) for k < c
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provided ε ′ > 0 is sufficiently small. By Theorem A’, the latter group is isomor-
phic to IHk−1(L ,∂L ) (provided p is so close to p′ that L=v lies in the collaring
of ∂L for some v < v1). �

This completes the proof of Proposition 6.1 and hence also Theorem C’. �

7. COMPLEX ALGEBRAIC CURVES

Complex algebraic curves are beautiful examples where the Morse group Ap
can be computed intuitively.

Let C ⊂C2 be the complex curve cut out by a nonconstant polynomial P(w,z)
with complex coefficients, ie C = P−1(0). Assume without loss of generality that
P has no repeated factors. Let {p} be a zero-dimensional stratum of C.

A classical theorem (see for example [Mil68] §3.3) says that p has a neigh-
borhood consisting of finitely many branches B1, . . . ,Bb that meet only at the
point p. Topologically, each branch is a 2-disc, but within C2 they may “twist
around” p several times and fail at to be smooth submanifolds of C2 at p. The
multiplicity of C at p measures this twisting; it is the least integer m such that,
for some i+ j = m:

∂ mP
∂wi∂z j (p) 6= 0 .

Note that m = 1 if and only if C is a smooth submanifold of C2 near p.
It can be shown that the complex link of C at p consists of precisely m points.

(For the proof of a more general fact, see [Mil68] §7.) Each branch contains at
least one of these points, and the monodromy homeomorphism permutes the
points within each branch cyclically (the boundary of each branch is a circle).
In this way, the variation map restricted to the (zero-dimensional) intersection
homology of each branch has 1-dimensional kernel {(k,k, . . . ,k) : k ∈ Z}. As a
result, the variation map has total rank m− b, and so the Morse group Ap is
isomorphic to Zm−b.

Examples. Consider the curve cut out by the polynomial P(w,z) = wz. It has
two branches at the origin corresponding to the factors w and z. Its multiplicity
at the origin is 2 (because ∂ 2P/∂w∂z = 1 and all lower derivatives vanish at the
origin). So the complex link consists of two points, one in each branch. The
monodromy homeomorphism fixes each point, so the variation map has total
rank 0, and the Morse group A0 is 0.

At the other extreme is the “cusp” cut out by the polynomial Q(w,z) = w2−z3.
Its multiplicity at the origin is 2, but since Q is irreducible there is only one
branch. (So the origin is not singular from the topological viewpoint—just from
the differential viewpoint.) So the complex link consists of two points, both in
the same branch. The monodromy homeomorphism exchanges these points, so
the variation map has total rank 1, and the Morse group A0 is Z.

Synthesizing these examples, we see that the complex link at the origin
of the curve cut out by the polynomial R(w,z) = w(w2− z3)(w4− z5) consists of
7 points, distributed in 3 branches. The monodromy homeomorphism fixes the
first point, exchanges the next two, and permutes the last four in a cycle. In
this way, the variation map has total rank 4, and the Morse group A0 is Z4.
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APPENDIX A. INTERSECTION HOMOLOGY

Let Y be a (not necessarily compact) purely n-dimensional complex analytic
variety (analytically embedded in some ambient complex analytic manifold M)
with a fixed Whitney stratification. A theorem (see [Gor78]) says that Y admits
a triangulation that is compatible with its stratification. Let (Ck(Y ),∂) denote
the complex of simplicial chains on Y with Z coefficients.

Definition A.1. The intersection homology of Y , denoted IH∗(Y ), is the homol-
ogy of the sub-chain-complex:

ICk(Y ) := {c ∈ Ck(Y ) :dim( |c| ∩S)< k− c and
dim(|∂c|∩S)< k− c−1 for each stratum S

of complex codimension c > 0} .
(The second condition ensures that ∂ restricts to this sub-chain-complex.)

Goresky and MacPherson [GM80] introduced intersection homology in order
to extend Poincaré Duality to stratified spaces; for Y compact and oriented they
constructed an intersection pairing:

IHi(Y )× IHn−i(Y )→ H0(Y )→ Z

which is nondegenerate when tensored with Q.
Note that although we defined intersection homology with reference to a

fixed stratification, it is independent of choice of stratification. In fact it is
a topological invariant,4 but not a homotopy invariant. Intersection homol-
ogy thus defies the most basic stereotype of a homology theory. (It also lacks
induced maps in general—although large classes of maps, such as so-called
placid maps, do induce homomorphisms.)

Nevertheless, intersection homology has the following familiar properties.

Relative Groups. If U ⊂ Y is open then U inherits a stratification from Y , and
relative intersection homology IHk(Y,U) can be defined just as for ordinary ho-
mology. These relative groups fit into the familiar long exact sequence for
pairs. Furthermore, if V ⊂U is open, then the resulting relative groups fit into
the familiar long exact sequence for triples.

More generally, IHk(Y,U) can be defined if U ⊂ Y is smoothly enclosed—this
means that U = Y ∩M′, where M′ is a complex analytic submanifold of M of
dimM′ = dimM whose boundary ∂M′ intersects each stratum of Y transversely.5

If V ⊂U is smoothly enclosed, then the resulting relative groups again fit into
the familiar long exact sequences for pairs and triples.

If Y has a collared boundary ∂Y , then the collaring is smoothly enclosed and
gives rise to relative groups IHk(Y,∂Y ).

Excision. If V ⊂U◦ is smoothly enclosed, then the inclusion:

(Y −V,U−V ) ↪→ (Y,U)

induces an isomorphism on intersection homology.

4To prove topological invariance, Goresky and MacPherson [GM83a] (following a suggestion
of Deligne and Verdier) recast their work in sheaf-theoretic language; they defined a differential
complex of sheaves IC•(Y ) whose hypercohomology groups are the intersection homology groups
of Y .

5In this way, if f : M → R restricts to a Morse function on X , then the relative groups
IHk(X≤v+ε ,X≤v−ε ) are defined since X≤v−ε = X ∩ f−1(−∞,v− ε] is smoothly enclosed, the boundary
f−1(v− ε) being the pre-image of a regular value and thus a submanifold of M transverse to each
stratum of X .
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Künneth Formula. Let (Da,∂Da) denote the (closed) a-dimensional disk and its
boundary sphere. Then for all k there are canonical isomorphisms:

IHk(Y,U)∼= IHk( (Y,U)×Da ) and
IHk(Y,U)∼= IHk−a( (Y,U)× (Da,∂Da) ) .

Local Calculation. This property highlights an essential difference between
intersection homology and ordinary (homotopy invariant) homology theories.

Suppose a point p ∈ Y lies in a stratum S of complex codimension c. Then
S has real dimension a = 2(n− c). A consequence of Whitney’s conditions (cf
Definition 2.2 on p. 3) is that p has a neighborhood:

U ∼= Da×Cone(L)

where L is the boundary of (the closure of) a sufficiently small normal slice to
S at p.

Local calculation states that:

IHk(U) =

{
0 for k ≥ c
IHk(L) for k < c

and dually that:

IHk(U,∂U) = IHk(U,U−{p}) =
{

ĨHk−a−1(L) for k ≥ 2n− c+1
0 for k < 2n− c+1

where reduced intersection homology ĨHk(Y ) is defined as IHk(Y,y0) where y0 is
a point in the top-dimensional stratum of Y .
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