
The Hierarchical Functional Inheritance Model

A Mathematical Abstraction for Computational Process Music

Carl McTague
∗

May 20, 2000

Abstract

By combining the notion of event indexing with a
hierarchical model with arbitrary inheritance func-
tions, we present a simple, yet general and powerful
solution to the event definition problem in music, fa-
cilitating pervasive application of process to musical
composition.

A Proposition

We begin with a simple proposition.

Proposition 1. For all pieces of music (more pre-
cisely a single observer’s perception of a performance
of any such piece1) there exists a unique continu-
ous real-valued function f ∈ C(R) mapping a time-
dependent variable t to the position f(t) of a fixed
point on a sound-sensitive membrane.

How do we define such a function? We view the
creative process of musical composition as the act of
defining such a function and concern ourselves with
this task for the remainder of this paper.

An overwhelming body of music is composed of
notes; the music may be decomposed into a finite
number of discrete, atomic objects with, among other
properties, an associated timing interval (i.e. a start-
ing time and duration). This is the inspiration for
our definition of an event.
∗Copyright c© 1999-2000 by Carl McTague

(carl@mctague.org)
1For simplicity we assume single-channel audio, although,

for most humans, a musical experience is perceived in two
channels (one per ear).

Definition 1. An event e ∈ C(R) is a real-valued
continuous function composed by the association of
a function e∗ with an interval I denoted e = (e∗, I)
defined

e(t) =

{
e∗(t) for t ∈ I
0 for t /∈ I

with e∗(t) = 0 for t on the boundary of I. We denote
the set of all events E.

We can then define the function f simply as the
sum of a collection of events E ⊂ E,

f =
∑
e∈E

e

With this definition of f we can see the task of
musical composition as the construction of a set of
events. For the remainder of this paper, we concern
ourselves with the construction of finite collections of
events.

Event Indexing

Because E is a very large set, we find it useful to
index a subset of it with a more familiar set.

Definition 2. Let S be a set. Then we call a map
p : S → E an event indexing function and we call
each a ∈ S an event representative of its image p(a).
Further, we denote by PS the set of all event indexing
functions of S.

With these definitions we reduce the task of musi-
cal composition to selecting a familiar set S, creating

1

at least one event indexing function p ∈ PS , and con-
structing a subset T of S. For we can then define f
with

f =
∑
a∈T

p(a).

Note that this approach is very common. Consider
composition in the Cmix environment. When a com-
poser creates a Cmix instrument, he creates families
of functions (each Cmix instrument typically repre-
sents an entire family of functions; specific functions
tend to be selected through arguments.) Then in his
Cmix score file he defines timing intervals and asso-
ciates them with functions by linking them to Cmix
instruments with particular arguments. Indeed, even
the act of composing at the piano may be seen in this
way.

Hierarchy and Inheritance

We have now set the stage for our primary object: the
presentation of a powerful and efficient technique for
constructing finite subset of event indices and pairing
them with event indexing functions: a hierarchical
structure.

Imagine a tree structure whose leaves represent
events constructed in such a way that each event is
determined by its position within the tree. We ac-
complish this by associating to each branch in the
tree an inheritance function and to each leaf an event
indexing function. We then propagate an event repre-
sentative through the tree from the root. The repre-
sentative is altered and redistributed at each branch
by the corresponding inheritance function. When the
propagating representatives reach leaves of the tree,
they’re made into events by the corresponding event
indexing functions. We make this formal.

Note 1. For the remainder of this section, let n be
a positive integer and let S be a set.

Definition 3. An inheritance function is a function

Rn : S → Sn

which to each element of S assigns an n-tuple of ele-
ments of S.

Definition 4. An event hierarchy ψn is an associ-
ation of an inheritance function Rn with an n-tuple
of objects (c1, . . . , cn) written

ψn = (Rn, (c1, . . . , cn))

where each c1, . . . , cn is either itself an event hierar-
chy or an event indexing function. We denote the set
of all event hierarchies Yn.

We now make formal how to flatten event hierar-
chies into finite collections of events.

Definition 5. Let a ∈ S and let ψn be an
event hierarchy with ψn = (Rn, (c1, . . . , cn)). Choose
b1, . . . , bn ∈ S such that

Rn(a) = (b1, . . . , bn).

Then we define the function Ξa : Yn → P (E),
which to each event hierarchy associates a collection
of events by

Ξa(ψn) =

n⋃
k=1

Ξbk(ck) for ψn ∈ Yn

{ψn(a)} for ψn ∈ PS

We say that Ξ flattens ψn.

An Example

We now provide a simple example. Let S = R
2. We

define an event indexing function σ ∈ PS with

σ(x, y) = (E∗, [x, x+ y])

where E∗ is a waveform that sounds like a firm human
clap in a magnificent concert hall. That is, σ(x, y) is
an event representing a clap during the interval of
time [x, x+ y].

Next we define two inheritance functions, αn and
βn. Let (x, y) ∈ S. Then let

αn(x, y) =
((

x,
y

n

)
,
(
x+

y

n
,
y

n

)
, . . .

. . . ,
(
x+ (n− 1)

y

n
,
y

n

))
βn(x, y) =((x, y), . . . , (x, y)).

2

Finally, for convenience, we define a shorthand no-
tation.

α(c1, . . . , cn) → (αn, (c1, . . . , cn))
β(c1, . . . , cn) → (βn, (c1, . . . , cn))

We have now developed an incredibly versatile tool
for rhythm synthesis. As a simple example, consider
the event hierarchy

ψ = α(α(σ, α(σ, σ)), β(α(σ, σ), α(σ, σ, σ))).

We can flatten ψ to obtain a set of events T by com-
puting T = Ξ(0,24)(ψ),2 which yields

T ={σ(0, 6), σ(6, 3), σ(9, 3), σ(12, 6),
σ(18, 6), σ(12, 4), σ(16, 4), σ(20, 4)}

Finally, we define f for this rather short, pedantic
piece by summing the elements of T . That is,

f = σ(0, 6) + · · ·+ σ(20, 4).

Conclusion

In conclusion, we have developed a remarkably ver-
satile abstraction for algorithmic musical composi-
tion. We first identified the central problem in musi-
cal composition as the definition of a single function.
Next, we formalized the notion of musical events and
introduced the event indexing functions. We then de-
veloped event hierarchies with inheritance functions.
Finally, we illustrated a single powerful application
of these tools for rhythm synthesis.

Acknowledgments

I would like to acknowledge the inspiration of two
composers, Philip Glass and Steve Reich. Their
works have revolutionized how I hear and write mu-
sic. I would particularly like to acknowledge Philip
Glass’s score to Godfrey Reggio’s film Koyaanisqatsi
and Steve Reich’s Music for Mallet Instruments,
Voices and Organ which I have heard hundreds of
times and know by heart.

2We chose the tuple (0, 24) simply to avoid fractions (for
typographical cleanliness)!

3

