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To develop powerful
mathematical structures in order
to compose interesting new music.
(not to analyze existing music — although inspiration often
comes from existing music and analytical techniques)

Objective:
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Sound Spaces

B (     )m
m-channel sounds

a sound space B
[ (Lp)m or whatever ]

a sound function c



Example: Piano

  

† 

B = Z ¥ R+ ¥ R ¥ R (     )m
piano

0    1   2   3   4     5    6  7   8   9 10  11......-12 -11 -10 -9 -8   -7  -6 -5 -4  -3  -2  -1

intensity attack time duration



But why bother with sound spaces at all?

Why not just work directly
within (Lp)m (or whatever)?



Why use sound spaces?

• (Lp)m is dauntingly HUGE!  Want to
avoid the ultimate writer’s block — how
do you ever get started in the “space of all
possible sounds”?

• Want nice little representations of
sounds inside the computer.



Why use sound spaces?

• Want “musical topologies!” — the standard
metric on (Lp)m is too rigid, unmusical.

• Natural (e.g. continuous) operations on the
spaces should correspond to musical processes.

• E.g. variations might lie within neighborhoods:

The Goldberg
Variations



General approach to composition

Inductively construct increasingly complex and specialized sound
spaces until an entire piece of music is the image of a single,
conspicuous point.

Think of it as building increasingly powerful musical instruments.
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a new space A

The General Xi (X) Construction

copies of an existing
sound space B

(each equipped with a
potentially distinct sound

function)

+
(     )m

(     )m

(     )m

(     )m

induced map
making A into
a sound space

† 

f3 : A Æ B3

a new
“inheritance function”



Xi for diagram chasers:

Given a list of sound functions

and a family of “inheritance functions”

make A into a sound space via the induced map:

A BN [(     ) ]m N

(     )minduced

  

† 

c1 ¥L¥ cN

+
† 

fN

{              }ci : Bö(     )m

i=1,…N
{ fn : AöBn }n



So, with Xi in hand, we can build new sound
spaces by constructing a few:

• fundamental sound spaces
• families of inheritance functions

This is precisely what we do, next…

and arranging them into hierarchies.



A simple sound space:
Consider the plane !2 as a sound space by regarding

the point (t,d) as a hum at time t with duration d.

(        )mHum
(t,d)

t t+d

The so-called time-vector approach.



Two Useful Families of Inheritance Functions:

A An∆n

a (a,…,a)
The “diagonal maps”

for simultaneity:

!2 (!2)nan
For successiveness:

just make n copies

(t,d) [(t,d’), (t+d’,d’),…,
(t+(n-1)d’,d’)]
where d’=d/n

even subdivision of
an interval into n

subintervals

( )

( )( () )
a3



Application: Rhythm Trees
a

a

a

D

aa

X(a,(H,X(a,(H,X(a,(H,H,H))))))

X(D,(X(a,(H,H)),X(a,(H,H,H))))

These functions, evaluated at (0,1)
give the corresponding  rhythms

performed in the time interval (0,1).

where H=Hum

the “Brahms rhythm”



Instead of Time Vectors,
Functions of the Unit Interval

[0,1]T!

But, we can use nonlinear functions to achieve accel– and
deceleration and expressive rhythms!

[ ]

f(0)=t

0 1

f(1)=t+d
Instead of (t,d):



Inheritance Functions for [0,1]T!

(

a3

( ) ( )

)

)(

0 1

0 0 01 1 1

Generalized a:

D just as before.



But why not just use time vectors and
apply a global time map at the end?

The hierarchical [0,1]T! approach
permits local modification of the

time map.  Furthermore, different
simultaneous components of a

piece can have distinct time maps!



Products of Inheritance
Functions

We can form products of inheritance
functions and thus pass several

attributes of sound through the tree
at once in parallel.

E.g. rhythm, pitch, harmony,
dynamics
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“Enharmonic equivalence”:
† 

nota(n) := nmod 7, n / 7Î ˚( )
Give it the algebraic structure (Z,+).

(letter name, accidental)

Strongly inspired by the work of Eric Regener



Then, look at the sublattice:

† 

H := (h, p) Œ Z 2 : 4h - p Œ 7Z{ } Ã (Z 2,+)

where h is helix position and p is staff
position.

† 

P := (h, p) Œ H : p ≥ 0{ }

† 

(h, p) := h ⋅ sign(p), p( ).
and a corresponding absolute value:

It has a positive cone:
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Brief Introduction to Functional Harmony
1    2    3   4   5   6   7   8

I   II  III IV  V  VI VII  I

II  V   I

II  V    I II   V   I II  V   I
II V I



(ii-V-I)7
(2002)

V I

ii V I ii V Iii V I

ii V I

ii V I

ii

ii V I

ii V I

ii V I

I

33=27

34=81

35=243

36=729

37=2187
total progession length: 3280



































Here, the helix was fitted with
“3-limit tuning.”

More generally: use factorization of
rationals to biject " into #∞

O !∞:

  

† 

an a pi
ai’

pi the i th prime

and lift a nice metric from !∞.

(finite support)
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Dissonance of 2 Pure Sine Tones

Frequency difference

“ D
iss

on
an

ce
”

Kameoka, Kuriyagawa & Sethares

Empirical
Psychoacoustics

(not ratio—hence interval corresponding to
maximum dissonance depends on register)



Dissonance of 2 Harmonic “Buzzes”

Frequency ratio 
(of 2 harmonic buzzes) 

“D
iss

on
an

ce
”



Ripples Through Pitch Space
(2003)

Pitch space 

“P
ot

en
tia

l F
ie

ld
”

4 Mvts

20 evenly-spaced particles



6 Integers

Ripples Through Pitch Space  

(ii-V-I) 7

Xi-Operator

Sound Spaces

Lament

Helix of Fifths

Model of Functional Harmony

Schenkerian Synthesis

Dissonance CurvesSchenkerian Analysis

(2000)

(2002)

(2003)

(work in progress)



But what about melodies?



But what about melodies?
Idea: Do Schenkerian analysis in

reverse via Xi—Schenkerian synthesis!



But what about melodies?
Idea: Do Schenkerian analysis in

reverse via Xi—Schenkerian synthesis!

But what is
Schenkerian analysis?
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Inheritance Functions for
Schenkerian Synthesis

to

ascending descending

from



Lament
(work in progress)

2 Mvts

Melodic line created with
Schenkerian Synthesis: embedded
within self.

“Lyre from Ur”
(from ca. 2400 B.C.)

Source: Oriental Institute

(so far)
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Summary:

Mathematical structures were described
which can be used to produce music
through computation.  Most important
was the versatile Xi Operator, which may
be used to construct models for
expressive rhythm, functional harmony
and melody.



www.mctague.org/carl

Please visit my web page

to hear these pieces and others.







Want the mathematical structures to
be musically meaningful (whatever that
means) — at least inspired or
informed by musical experience,
intuition or theory.



Can also use [0,1]T! to control
continuous parameters of sound.

E.g. loudness





I call this construction the
Xi-Operator (X)

Given a family of inheritance functions
and an ordered list of sound spaces, it

produces a new sound space:

  

† 

ci : B Æ (Lp )m( )i=1,KN

† 

fn : A Æ Bn{ }n( )

† 

A Æ (Lp )m( )X



An alternate view;
inductive use of Xi as information propagating through a tree:

f2

g2 h3

i2

Information flows down the tree, manipulated at each branch
by the local inheritance function until it reaches the Os, which

denote possibly distinct, existing sound spaces.


