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1. Introduction

The helix of fifths is a model for musical pitch1 possessing a number of unique
(and useful!) features. Most importantly, it contains a countable infinity of pitch
classes and comes very close to capturing the algebraic structure of western tonal
language and notation. As an algorithmic compositional tool, it provides a sim-
ple solution to the problem of intuitive enharmonic representation in scores (e.g.
should a pitch be notated B[ or A] to make it seem more natural to a human
performer?). Furthermore, it enables new tuning possibilities of classical structures
within the realm of computer music and is extremely useful as a foundation for more
sophisticated harmonic models. It is strongly inspired by ideas Eric Regener put
forth in his under-appreciated Musical Notation and Equal Temperament: A Formal
Study (1973).

2. The helix

Let H := Z. Then H may be considered a model for pitch classes by virtue of
the function nota : H → Z7 × Z,

nota(n) := (n mod 7, n div 7) = (n mod 7, bn/7c)
which maps H to traditional western musical notation if we interpret the first
component as a traditional note letter in circle-of-fifths ordering i.e. 07 7→ F, 17 7→
C, 27 7→ G, . . . , 67 7→ B and interpret the second component as the accidental in
the following way: 0 7→ \, while 1 7→ ], 2 7→ ]], . . . and −1 7→ [,−2 7→ [[, . . . etc. In
this way, nota(0) = F and nota[H] is essentially:2

. . . ,F[[[, . . .,F[[, . . .,F[, . . . ,E[,B[,F,C,G,D,A,E,B,F],C], . . . ,B], . . . ,B]], . . . ,B]]], . . .

Notice that H is quite unusual; it represents a countable infinity of pitch classes
(as opposed to the 12 in Z12). This is achieved by dispensing with the notion of
enharmonic equivalence. For example, in H, −1 6= 11, i.e. B[ 6= A].

Geometrically, one can imagine H as a helix winding forever upwards with an
increasing number of sharps and forever downwards with an increasing number of
flats. If one were to project this helix downwards onto the plane perpendicular to
its axis, collapsing H into enharmonic equivalence classes, one would obtain the
conventional circle of fifths.3

Date: June 2002, edited August 2002.
1I.e. a mathematical structure M for which there is a tuning function φM : M → R assigning

to each of its elements a frequency. An established example is the equal-tempered Z12, familiar
from serial composition.

2The underlining is merely meant to help illuminate the structure of H.
3provided the helix were wound with period 12; for other purposes it is useful to imagine it

with period 7 as underlined above.
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The elements of H represent pitch classes, but not specific pitches. For example,
0 ∈ H denotes the pitch class F, but not a specific pitch (i.e. a specific octave).
For this, we consider a special subset H ⊂ H × Z,

H := {(h, p) ∈ H × Z = Z2 : 4h− p ∈ 7Z}

where the second coordinate p encodes the staff position measured from the F
above middle C (henceforth referred to as middle F). The algebraic condition which
elements of H satisfy ensure that they don’t refer to nonsense such as a G notated
in the staff position reserved for F.4 H is closed under component-wise integer
addition, which corresponds to accidental-sensitive transposition. We call H simply
the helix (although it’s structure is actually not really a helix, more a regular lattice
of points on the plane).

Note that we could just as well have defined H with an octave rather than a
staff position component. Then there would have been no need for an algebraic
condition, but a meaningful addition would have been much less convenient to
define.

The helix has a positive cone5

P := {(h, p) ∈ H : p ≥ 0}

and a corresponding absolute value6

|(h, p)| := (h · sign(p), |p|).

We can think of P as the collection of musical intervals and think of |x−y| = |y−x|
as the musical interval between two notes x and y ∈ H. Table 1 presents elements
of P within the octave, i.e. (h, p) ≤P (0, 7), along with their traditional names
in music theory. Note that the helix has two different tritones, just as in musical
notation.

3. Tuning the helix

Because the helix distinguishes between enharmonically equivalent pitches, it
grants the luxury of tuning them differently. The most immediate idea is to tune
the helix in ascending perfect 3

2 ratios, sending the pitch class h ∈ H to the family

4Note that the condition corresponds to the relationship satisfied by the three most fundamen-

tal numbers in Western harmony: 4+7 = 11 or, more idiomatically, V + 8ve = 12.
5A positive cone P is a distinguished subset of a linear space closed under addition and multi-

plication by positive scalars. With positive cones, we may generalize inequalities; we may consider

an inequality a ≤P b to be the statement b− a ∈ P . For example, the standard inequalities in R
may be realized via the positive cone R+ of positive real numbers.

6An absolute value on a linear space X with a positive cone P may be thought of as a mapping
f : X → P with the properties:

(1) a ≤P f(a) (i.e. f(a)− a ∈ P )
(2) f(−a) = f(a)

(3) f(λ · b) = |λ| · f(b) where |λ| is absolute value of λ in the underlying field.
(4) f(a+ b) ≤P f(a) + f(b)

for all a, b ∈ X and all scalars λ. Although H lacks a scalar multiplication, it inherits all other
properties directly from the absolute value on Z.
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(h, p) ∈ P musical interval

(−6, 4) ‘minor’ tritone
(−5, 1) minor second
(−4, 5) minor sixth
(−3, 2) minor third
(−2, 6) minor seventh
(−1, 3) perfect fourth

(0, 0) unison
(1, 4) perfect fifth
(2, 1) major second
(3, 5) major sixth
(4, 2) major third
(5, 6) major seventh
(6, 3) ‘major’ tritone

Table 1. Some elements of P within the octave (there are a
countable number) and their corresponding names in traditional
music theory.

of frequencies 2Z
(

3
2

)h
. This leads to the following tuning function for H.

φH̄(h, p) := φH̄(0, 0) · 2oct(p) · sup
n∈Z
{3h/2n < 2},

where oct(p) := p div 7 denotes the signed number of octaves between staff posi-
tion p and middle F. The sup construction is necessary to ensure that φH̄ sends
pitches within the proper octave. It seems quite likely that other interesting tuning
functions are possible, but I have not yet imagined or explored them.

4. An application: a simple model for jazz harmonies

The helix is quite useful as a foundation for more elaborate models of harmony.
I present a very simple toy model for jazz harmonies which is defined independently
of any particular pitch model, but for which the helix is very well suited.7

A scale is a monotone embedding of the integers into a pitch model. That
is, a function s : Z → M where M = H, Z12 or any other pitch model and
a < b⇒ φM (s(a)) ≤ φM (s(b)).8 If one were of a conservative mind-set, one might
further insist that a scale exhibit finite, uniform octave periodicity, i.e. that there
exist an ms ∈ N such that φM (s(n + ms)) = 2 · φM (s(n)) for all n ∈ Z. But let’s
not do that, since it precludes so many unusually interesting possibilities!

A harmony is then a triple consisting of a scale, a quality and a root, (s, q, r) ∈
(Z→M)×Z×M . A quality is simply an integer, and a root simply a point of M .
The meaning of this triple comes from the function π(s,q,r) : N→ P(M),

π(s,q,r)(n) := {r + s(q + 2i)− s(q) : i ∈ {0, . . . , n− 1}}.

Then π(s,q,r)(3) is the triad generated by the harmony (s, q, r) and π(s,q,r)(4) its
seventh chord etc. We can achieve ‘diatonic’ progressions and substitutions by

7This model was in fact employed in the composition of the piece (ii→ V → I)7; please visit
http://www.mctague.org/carl/ to hear a recording.

8Note that we are using the linear ordering of M induced by the range of the tuning function
φM : M → R.
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shifting q and r in parallel according to s (see diaσn below) and achieve other
substitutions and quality changes by keeping r fixed, while altering q.

To be more concrete, we explicitly construct some common harmonies over H.
First, we construct the major diatonic scale, d : Z→ H,

d(n) := ([0, 2, 4,−1, 1, 3, 5](n mod 7), n),

where [a0, . . . , an]i denotes ai. Then the F major harmony is T := (d, 0, (0, 0)), its
tonic triad π(d,0,(0,0))(3) and its dominant seventh chord π(d,4,(1,4))(4).

Straight-forward algebraic operators may be defined on harmonies to simplify
these constructions. For example, if we define the diatonic shift,

diaσn(s, q, r) := (s, q + n, r + s(q + n)− s(q)).
then the preceding dominant seventh may be written as πdiaσ4(T )(4). Other useful
operators are also possible and secondary embellishment is easily accomplished.
Furthermore, other practical scales, such as the octatonic, may be used.
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